A New Class of Uniformly Stable Time-Domain Foldy–Lax Models for Scattering by Small Particles. Acoustic Sound-Soft Scattering by Circles

Maryna Kachanovska
{"title":"A New Class of Uniformly Stable Time-Domain Foldy–Lax Models for Scattering by Small Particles. Acoustic Sound-Soft Scattering by Circles","authors":"Maryna Kachanovska","doi":"10.1137/22m1495512","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 22, Issue 1, Page 1-38, March 2024. <br/> Abstract. In this work we study time-domain sound-soft scattering by small circles. Our goal is to derive an asymptotic model for this problem that is valid when the size of the particles tends to zero. We present a systematic approach to constructing such models based on a well-chosen Galerkin discretization of a boundary integral equation. The convergence of the method is achieved by decreasing the asymptotic parameter rather than increasing the number of basis functions. We prove the second-order convergence of the field error with respect to the particle size. Our findings are illustrated with numerical experiments.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"217 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1495512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiscale Modeling &Simulation, Volume 22, Issue 1, Page 1-38, March 2024.
Abstract. In this work we study time-domain sound-soft scattering by small circles. Our goal is to derive an asymptotic model for this problem that is valid when the size of the particles tends to zero. We present a systematic approach to constructing such models based on a well-chosen Galerkin discretization of a boundary integral equation. The convergence of the method is achieved by decreasing the asymptotic parameter rather than increasing the number of basis functions. We prove the second-order convergence of the field error with respect to the particle size. Our findings are illustrated with numerical experiments.
用于小颗粒散射的新型均匀稳定时域折叠-松弛模型。声波-圆的软散射
多尺度建模与仿真》,第 22 卷第 1 期,第 1-38 页,2024 年 3 月。 摘要在这项工作中,我们研究了小圆的时域声软散射。我们的目标是为这一问题推导出一个渐近模型,该模型在颗粒尺寸趋于零时有效。我们提出了一种构建此类模型的系统方法,该方法基于对边界积分方程进行精心选择的 Galerkin 离散化。该方法的收敛是通过减少渐近参数而不是增加基函数数量来实现的。我们证明了场误差在粒度方面的二阶收敛性。我们通过数值实验来说明我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信