Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

Pub Date : 2024-01-03 DOI:10.1007/s00454-023-00610-0
Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, Alexandra Weinberger
{"title":"Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs","authors":"Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, Alexandra Weinberger","doi":"10.1007/s00454-023-00610-0","DOIUrl":null,"url":null,"abstract":"<p>Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). A simple drawing is c-monotone if there is a point <i>O</i> such that each ray emanating from <i>O</i> crosses each edge of the drawing at most once. We introduce a special kind of c-monotone drawings that we call generalized twisted drawings. A c-monotone drawing is generalized twisted if there is a ray emanating from <i>O</i> that crosses all the edges of the drawing. Via this class of drawings, we show that every simple drawing of the complete graph with <i>n</i> vertices contains <span>\\(\\Omega (n^{\\frac{1}{2}})\\)</span> pairwise disjoint edges and a plane cycle (and hence path) of length <span>\\(\\Omega (\\frac{\\log n }{\\log \\log n})\\)</span>. Both results improve over best previously published lower bounds. On the way we show several structural results and properties of generalized twisted and c-monotone drawings, some of which we believe to be of independent interest. For example, we show that a drawing <i>D</i> is c-monotone if there exists a point <i>O</i> such that no edge of <i>D</i> is crossed more than once by any ray that emanates from <i>O</i> and passes through a vertex of <i>D</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00610-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). A simple drawing is c-monotone if there is a point O such that each ray emanating from O crosses each edge of the drawing at most once. We introduce a special kind of c-monotone drawings that we call generalized twisted drawings. A c-monotone drawing is generalized twisted if there is a ray emanating from O that crosses all the edges of the drawing. Via this class of drawings, we show that every simple drawing of the complete graph with n vertices contains \(\Omega (n^{\frac{1}{2}})\) pairwise disjoint edges and a plane cycle (and hence path) of length \(\Omega (\frac{\log n }{\log \log n})\). Both results improve over best previously published lower bounds. On the way we show several structural results and properties of generalized twisted and c-monotone drawings, some of which we believe to be of independent interest. For example, we show that a drawing D is c-monotone if there exists a point O such that no edge of D is crossed more than once by any ray that emanates from O and passes through a vertex of D.

Abstract Image

分享
查看原文
在简单绘制的完整图形中寻找平面结构的扭曲方法
简易绘图是指图中的边是约旦弧,每对边最多共享一个点(一个适当的交叉点或一个共同的端点)的绘图。如果存在一个点 O,使得从 O 出发的每条射线最多与图中的每条边相交一次,那么简单图就是 c-monotone 图。我们引入一种特殊的 c-monotone 绘图,称之为广义扭曲绘图。如果有一条从 O 出发的射线穿过图中的所有边,那么该 c 单调图就是广义扭曲图。通过这一类图,我们证明了具有 n 个顶点的完整图的每一个简单图都包含 \(\Omega (n^{\frac{1}{2}})\) 条成对不相交的边和一个长度为 \(\Omega (\frac{log n }{log \log n})\)的平面循环(以及路径)。这两个结果都比之前公布的最佳下限有所提高。在此过程中,我们展示了广义扭曲图和 c 单调图的一些结构性结果和性质,我们认为其中一些结果和性质具有独立的意义。例如,我们证明,如果存在一个点 O,使得 D 的任何边都不会被任何从 O 出发并经过 D 的顶点的射线穿过一次以上,那么绘图 D 就是 c-monotone 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信