XTrace: Making the Most of Every Sample in Stochastic Trace Estimation

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Ethan N. Epperly, Joel A. Tropp, Robert J. Webber
{"title":"XTrace: Making the Most of Every Sample in Stochastic Trace Estimation","authors":"Ethan N. Epperly, Joel A. Tropp, Robert J. Webber","doi":"10.1137/23m1548323","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 1-23, March 2024. <br/> Abstract. The implicit trace estimation problem asks for an approximation of the trace of a square matrix, accessed via matrix-vector products (matvecs). This paper designs new randomized algorithms, XTrace and XNysTrace, for the trace estimation problem by exploiting both variance reduction and the exchangeability principle. For a fixed budget of matvecs, numerical experiments show that the new methods can achieve errors that are orders of magnitude smaller than existing algorithms, such as the Girard–Hutchinson estimator or the Hutch++ estimator. A theoretical analysis confirms the benefits by offering a precise description of the performance of these algorithms as a function of the spectrum of the input matrix. The paper also develops an exchangeable estimator, XDiag, for approximating the diagonal of a square matrix using matvecs.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"30 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1548323","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 1-23, March 2024.
Abstract. The implicit trace estimation problem asks for an approximation of the trace of a square matrix, accessed via matrix-vector products (matvecs). This paper designs new randomized algorithms, XTrace and XNysTrace, for the trace estimation problem by exploiting both variance reduction and the exchangeability principle. For a fixed budget of matvecs, numerical experiments show that the new methods can achieve errors that are orders of magnitude smaller than existing algorithms, such as the Girard–Hutchinson estimator or the Hutch++ estimator. A theoretical analysis confirms the benefits by offering a precise description of the performance of these algorithms as a function of the spectrum of the input matrix. The paper also develops an exchangeable estimator, XDiag, for approximating the diagonal of a square matrix using matvecs.
XTrace:在随机轨迹估算中充分利用每个样本
SIAM 矩阵分析与应用期刊》第 45 卷第 1 期第 1-23 页,2024 年 3 月。 摘要隐式迹估计问题要求通过矩阵向量积(matvecs)获取方矩阵的迹近似值。本文设计了新的随机算法 XTrace 和 XNysTrace,利用方差缩小和可交换原理来解决迹估计问题。对于固定的矩阵预算,数值实验表明,新方法的误差比现有算法(如吉拉德-哈钦森估计器或 Hutch++ 估计器)小几个数量级。理论分析通过精确描述这些算法作为输入矩阵频谱函数的性能,证实了其优势。论文还开发了一种可交换估计器 XDiag,用于使用矩阵逼近正方形矩阵的对角线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信