{"title":"Second-order optimality conditions for the bilinear optimal control of a degenerate equation","authors":"Cyrille Kenne, Landry Djomegne, Pascal Zongo","doi":"10.1080/00036811.2023.2299714","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is the study of second-order optimality conditions for the bilinear control of a strongly degenerate parabolic equation. The equation is degenerate at the boundary of...","PeriodicalId":55507,"journal":{"name":"Applicable Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00036811.2023.2299714","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The main purpose of this paper is the study of second-order optimality conditions for the bilinear control of a strongly degenerate parabolic equation. The equation is degenerate at the boundary of...
期刊介绍:
Applicable Analysis is concerned primarily with analysis that has application to scientific and engineering problems. Papers should indicate clearly an application of the mathematics involved. On the other hand, papers that are primarily concerned with modeling rather than analysis are outside the scope of the journal
General areas of analysis that are welcomed contain the areas of differential equations, with emphasis on PDEs, and integral equations, nonlinear analysis, applied functional analysis, theoretical numerical analysis and approximation theory. Areas of application, for instance, include the use of homogenization theory for electromagnetic phenomena, acoustic vibrations and other problems with multiple space and time scales, inverse problems for medical imaging and geophysics, variational methods for moving boundary problems, convex analysis for theoretical mechanics and analytical methods for spatial bio-mathematical models.