{"title":"Time Series Quantile Regression Using Random Forests","authors":"Hiroshi Shiraishi, Tomoshige Nakamura, Ryotato Shibuki","doi":"10.1111/jtsa.12731","DOIUrl":null,"url":null,"abstract":"<p>We discuss an application of Generalized Random Forests (GRF) proposed to quantile regression for time series data. We extended the theoretical results of the GRF consistency for i.i.d. data to time series data. In particular, in the main theorem, based only on the general assumptions for time series data and trees, we show that the tsQRF (time series Quantile Regression Forest) estimator is consistent. Compare with existing article, different ideas are used throughout the theoretical proof. In addition, a simulation and real data analysis were conducted. In the simulation, the accuracy of the conditional quantile estimation was evaluated under time series models. In the real data using the Nikkei Stock Average, our estimator is demonstrated to capture volatility more efficiently, thus preventing underestimation of uncertainty.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12731","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12731","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss an application of Generalized Random Forests (GRF) proposed to quantile regression for time series data. We extended the theoretical results of the GRF consistency for i.i.d. data to time series data. In particular, in the main theorem, based only on the general assumptions for time series data and trees, we show that the tsQRF (time series Quantile Regression Forest) estimator is consistent. Compare with existing article, different ideas are used throughout the theoretical proof. In addition, a simulation and real data analysis were conducted. In the simulation, the accuracy of the conditional quantile estimation was evaluated under time series models. In the real data using the Nikkei Stock Average, our estimator is demonstrated to capture volatility more efficiently, thus preventing underestimation of uncertainty.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.