Finite Groups with a Soluble Group of Coprime Automorphisms Whose Fixed Points Have Bounded Engel Sinks

IF 0.4 3区 数学 Q4 LOGIC
E. I. Khukhro, P. Shumyatsky
{"title":"Finite Groups with a Soluble Group of Coprime Automorphisms Whose Fixed Points Have Bounded Engel Sinks","authors":"E. I. Khukhro,&nbsp;P. Shumyatsky","doi":"10.1007/s10469-023-09727-w","DOIUrl":null,"url":null,"abstract":"<p>Suppose that a finite group <i>G</i> admits a soluble group of coprime automorphisms A. We prove that if, for some positive integer <i>m</i>, every element of the centralizer <i>C</i><sub><i>G</i></sub>(<i>A</i>) has a left Engel sink of cardinality at most <i>m</i> (or a right Engel sink of cardinality at most <i>m</i>), then <i>G</i> has a subgroup of (|<i>A</i>|,<i>m</i>)-bounded index which has Fitting height at most 2α(<i>A</i>) + 2, where α(<i>A</i>) is the composition length of <i>A</i>. We also prove that if, for some positive integer <i>r</i>, every element of the centralizer <i>C</i><sub><i>G</i></sub>(<i>A</i>) has a left Engel sink of rank at most <i>r</i> (or a right Engel sink of rank at most <i>r</i>), then <i>G</i> has a subgroup of (|<i>A</i>|, <i>r</i>)-bounded index which has Fitting height at most 4α(A) + 4α(A) + 3. Here, a left Engel sink of an element g of a group <i>G</i> is a set <i>𝔈</i> (<i>g</i>) such that for every <i>x</i> ∈ <i>G</i> all sufficiently long commutators [...[[<i>x</i>, <i>g</i>], <i>g</i>], . . . , <i>g</i>] belong to <i>𝔈</i> (<i>g</i>). (Thus, g is a left Engel element precisely when we can choose (g) = {1}.) A right Engel sink of an element g of a group <i>G</i> is a set <i>ℜ</i>(<i>g</i>) such that for every <i>x</i> ∈ <i>G</i> all sufficiently long commutators [...[[g, x], x], . . . , x] belong to <i>ℜ</i>(<i>g</i>). Thus, <i>g</i> is a right Engel element precisely when we can choose <i>ℜ</i>(<i>g</i>) = {1}.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-023-09727-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that a finite group G admits a soluble group of coprime automorphisms A. We prove that if, for some positive integer m, every element of the centralizer CG(A) has a left Engel sink of cardinality at most m (or a right Engel sink of cardinality at most m), then G has a subgroup of (|A|,m)-bounded index which has Fitting height at most 2α(A) + 2, where α(A) is the composition length of A. We also prove that if, for some positive integer r, every element of the centralizer CG(A) has a left Engel sink of rank at most r (or a right Engel sink of rank at most r), then G has a subgroup of (|A|, r)-bounded index which has Fitting height at most 4α(A) + 4α(A) + 3. Here, a left Engel sink of an element g of a group G is a set 𝔈 (g) such that for every xG all sufficiently long commutators [...[[x, g], g], . . . , g] belong to 𝔈 (g). (Thus, g is a left Engel element precisely when we can choose (g) = {1}.) A right Engel sink of an element g of a group G is a set (g) such that for every xG all sufficiently long commutators [...[[g, x], x], . . . , x] belong to (g). Thus, g is a right Engel element precisely when we can choose (g) = {1}.

定点具有有界恩格尔下沉的可溶同素自动形群有限群
我们证明,如果对于某个正整数 m,中心化 CG(A) 的每个元素都有一个至多为 m 的左恩格尔汇(或至多为 m 的右恩格尔汇),那么 G 有一个 (|A|,m)-bounded index 的子群,它的 Fitting 高度至多为 2α(A)+2,其中 α(A) 是 A 的组成长度。我们还证明,如果对于某个正整数 r,中心集 CG(A) 的每个元素都有一个至多为 r 的左恩格尔汇(或一个至多为 r 的右恩格尔汇),那么 G 有一个 (||A|, r)有界索引的子群,它的拟合高度至多为 4α(A) + 4α(A) + 3。这里,群 G 中元素 g 的左恩格尔汇是一个集合𝔈 (g),对于每个 x∈G 都有足够长的换元[...[[x, g],g],...]属于𝔈 (g)。, g] 都属于𝔈(g)。(因此,正是当我们可以选择 (g) = {1} 时,g 才是一个左恩格尔元素)。群 G 中元素 g 的右恩格尔汇是这样一个集合 ℜ(g):对于每个 x∈ G,所有足够长的换元 [...[[g, x], x], ..., x] 都属于ℜ(g)。因此,正是当我们可以选择 ℜ(g) = {1} 时,g 才是一个右恩格尔元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信