Fractional Evolution Equations with Nonlocal Initial Conditions and Superlinear Growth Nonlinear Terms

IF 1.9 3区 数学 Q1 MATHEMATICS
Pengyu Chen, Wei Feng
{"title":"Fractional Evolution Equations with Nonlocal Initial Conditions and Superlinear Growth Nonlinear Terms","authors":"Pengyu Chen, Wei Feng","doi":"10.1007/s12346-023-00913-w","DOIUrl":null,"url":null,"abstract":"<p>We investigate the existence of solutions for a class of fractional evolution equations with nonlocal initial conditions and superlinear growth nonlinear functions in Banach spaces. By using the compactness of semigroup generated by the linear operator, we neither assume any Lipschitz property of the nonlinear term nor the compactness of the nonlocal initial conditions. Moreover, the approximation technique coupled with the Hartmann-type inequality argument allows the treatment of nonlinear terms with superlinear growth. Then combining with the Leray-Schauder continuation principle, we prove the existence results. Finally, the results obtained are applied to fractional parabolic equations with continuous superlinearly growth nonlinearities and nonlocal initial conditions including periodic or antiperiodic conditions, multipoint conditions and integral-type conditions.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"17 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00913-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the existence of solutions for a class of fractional evolution equations with nonlocal initial conditions and superlinear growth nonlinear functions in Banach spaces. By using the compactness of semigroup generated by the linear operator, we neither assume any Lipschitz property of the nonlinear term nor the compactness of the nonlocal initial conditions. Moreover, the approximation technique coupled with the Hartmann-type inequality argument allows the treatment of nonlinear terms with superlinear growth. Then combining with the Leray-Schauder continuation principle, we prove the existence results. Finally, the results obtained are applied to fractional parabolic equations with continuous superlinearly growth nonlinearities and nonlocal initial conditions including periodic or antiperiodic conditions, multipoint conditions and integral-type conditions.

具有非局部初始条件和超线性增长非线性项的分数演化方程
我们研究了一类在巴拿赫空间中具有非局部初始条件和超线性增长非线性函数的分数演化方程的解的存在性。利用线性算子生成的半群的紧凑性,我们既不假设非线性项的任何利普希兹特性,也不假设非局部初始条件的紧凑性。此外,近似技术与哈特曼不等式论证相结合,可以处理超线性增长的非线性项。然后,结合勒雷-肖德延续原理,我们证明了存在性结果。最后,我们将所得结果应用于具有连续超线性增长非线性和非局部初始条件(包括周期或反周期条件、多点条件和积分型条件)的分式抛物方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信