Bifurcation Patterns in a Discrete Predator–Prey Model Incorporating Ratio-Dependent Functional Response and Prey Harvesting

IF 1.9 3区 数学 Q1 MATHEMATICS
Vijay Shankar Sharma, Anuraj Singh, Pradeep Malik
{"title":"Bifurcation Patterns in a Discrete Predator–Prey Model Incorporating Ratio-Dependent Functional Response and Prey Harvesting","authors":"Vijay Shankar Sharma, Anuraj Singh, Pradeep Malik","doi":"10.1007/s12346-023-00929-2","DOIUrl":null,"url":null,"abstract":"<p>This work examines a discrete Leslie-Gower model of prey-predator dynamics with Holling type-IV functional response and harvesting effects. The study includes the existence and local stability analysis of all fixed points. Using center manifold theory, the codimension-1 bifurcations, viz. transcritical, Neimark–Sacker, fold, and period-doubling bifurcations, are determined for varying parameters. Moreover, the existence of codimension-2 Bogdanov–Takens bifurcation and Chenciner bifurcation is demonstrated, requiring two parameters to vary for the bifurcation to occur, and the non-degeneracy conditions for Bogdanov–Takens bifurcation are determined. An extensive numerical study is conducted to confirm the analytical findings. A wide range of dense, chaotic windows can be seen in the system, including period-2, 4, 8, and 16, period-doubling bifurcations, Neimark–Sacker bifurcations, and Chenciner and BT curves following two-parameters bifurcations. Further, it is also shown that the effect of harvesting parameter of the model for which the population dies out.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"64 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00929-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work examines a discrete Leslie-Gower model of prey-predator dynamics with Holling type-IV functional response and harvesting effects. The study includes the existence and local stability analysis of all fixed points. Using center manifold theory, the codimension-1 bifurcations, viz. transcritical, Neimark–Sacker, fold, and period-doubling bifurcations, are determined for varying parameters. Moreover, the existence of codimension-2 Bogdanov–Takens bifurcation and Chenciner bifurcation is demonstrated, requiring two parameters to vary for the bifurcation to occur, and the non-degeneracy conditions for Bogdanov–Takens bifurcation are determined. An extensive numerical study is conducted to confirm the analytical findings. A wide range of dense, chaotic windows can be seen in the system, including period-2, 4, 8, and 16, period-doubling bifurcations, Neimark–Sacker bifurcations, and Chenciner and BT curves following two-parameters bifurcations. Further, it is also shown that the effect of harvesting parameter of the model for which the population dies out.

Abstract Image

一个离散捕食者-猎物模型中的分岔模式,其中包含依赖比例的功能响应和猎物捕获
这项研究探讨了一个离散的莱斯利-高尔(Leslie-Gower)模型,该模型是一个具有霍林(Holling)-IV 型功能响应和收获效应的捕食者-捕食者动力学模型。研究包括所有固定点的存在性和局部稳定性分析。利用中心流形理论,确定了不同参数下的标度-1 分岔,即跨临界分岔、Neimark-Sacker 分岔、折叠分岔和周期加倍分岔。此外,还证明了 codimension-2 Bogdanov-Takens 分岔和 Chenciner 分岔的存在,分岔的发生需要两个参数的变化,并确定了 Bogdanov-Takens 分岔的非退化条件。为证实分析结果,进行了广泛的数值研究。在系统中可以看到各种密集的混沌窗口,包括周期-2、4、8 和 16、周期加倍分岔、Neimark-Sacker 分岔以及双参数分岔后的 Chenciner 和 BT 曲线。此外,还显示了种群消亡模型中收获参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信