Leilei Zhao, Xiao Guo, Yusen Pan, Shouchuang Jia, Liqiang Liu, Walid A. Daoud, Peter Poechmueller, Xiya Yang
{"title":"Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring","authors":"Leilei Zhao, Xiao Guo, Yusen Pan, Shouchuang Jia, Liqiang Liu, Walid A. Daoud, Peter Poechmueller, Xiya Yang","doi":"10.1002/inf2.12520","DOIUrl":null,"url":null,"abstract":"<p>Quantitative analysis of gait parameters, such as stride frequency and step speed, is essential for optimizing physical exercise for the human body. However, the current electronic sensors used in human motion monitoring remain constrained by factors such as battery life and accuracy. This study developed a self-powered gait analysis system (SGAS) based on a triboelectric nanogenerator (TENG) fabricated electrospun composite nanofibers for motion monitoring and gait analysis for regulating exercise programs. The SGAS consists of a sensing module, a charging module, a data acquisition and processing module, and an Internet of Things (IoT) platform. Within the sensing module, two specialized sensing units, TENG-S1 and TENG-S2, are positioned at the forefoot and heel to generate synchronized signals in tandem with the user's footsteps. These signals are instrumental for real-time step count and step speed monitoring. The output of the two TENG units is significantly improved by systematically investigating and optimizing the electrospun composite nanofibers' composition, strength, and wear resistance. Additionally, a charge amplifier circuit is implemented to process the raw voltage signal, consequently bolstering the reliability of the sensing signal. This refined data is then ready for further reading and calculation by the micro-controller unit (MCU) during the signal transmission process. Finally, the well-conditioned signals are wirelessly transmitted to the IoT platform for data analysis, storage, and visualization, enhancing human motion monitoring.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12520","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12520","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative analysis of gait parameters, such as stride frequency and step speed, is essential for optimizing physical exercise for the human body. However, the current electronic sensors used in human motion monitoring remain constrained by factors such as battery life and accuracy. This study developed a self-powered gait analysis system (SGAS) based on a triboelectric nanogenerator (TENG) fabricated electrospun composite nanofibers for motion monitoring and gait analysis for regulating exercise programs. The SGAS consists of a sensing module, a charging module, a data acquisition and processing module, and an Internet of Things (IoT) platform. Within the sensing module, two specialized sensing units, TENG-S1 and TENG-S2, are positioned at the forefoot and heel to generate synchronized signals in tandem with the user's footsteps. These signals are instrumental for real-time step count and step speed monitoring. The output of the two TENG units is significantly improved by systematically investigating and optimizing the electrospun composite nanofibers' composition, strength, and wear resistance. Additionally, a charge amplifier circuit is implemented to process the raw voltage signal, consequently bolstering the reliability of the sensing signal. This refined data is then ready for further reading and calculation by the micro-controller unit (MCU) during the signal transmission process. Finally, the well-conditioned signals are wirelessly transmitted to the IoT platform for data analysis, storage, and visualization, enhancing human motion monitoring.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.