{"title":"MoS2 thin film decorated TiO2 nanotube arrays on flexible Ti foil for solar water splitting application","authors":"Bheem Singh, Sudhanshu Gautam, Govinda Chandra Behera, Rahul Kumar, Vishnu Aggarwal, Jai Shankar Tawale, Ramakrishnan Ganesan, Somnath Chanda Roy, Sunil Singh Kushvaha","doi":"10.1088/2632-959x/ad1694","DOIUrl":null,"url":null,"abstract":"MoS<sub>2</sub>/TiO<sub>2</sub> nanostructure provides a lot of advantages in photoelectrochemical (PEC) applications due to the absorption of the wide spectrum solar radiation, more catalytically active sites, proper band alignment, and better separation of photogenerated charge carriers. Here we report PEC water splitting studies of MoS<sub>2</sub> thin film grown by chemical vapor deposition on TiO<sub>2</sub> nanotubes fabricated on flexible thin Ti foil. Raman and x-ray diffraction analysis confirmed the polycrystalline growth of a few layers MoS<sub>2</sub> on TiO<sub>2</sub>/Ti through their characteristic peaks. Field emission scanning electron microscopy revealed the nanotube surface morphology of TiO<sub>2</sub> having a diameter in the range of 200–300 nm. The chemical and electronic composition of MoS<sub>2</sub> and TiO<sub>2</sub> were investigated by x-ray photoelectron spectroscopy. PEC measurements performed in 0.5 M Na<sub>2</sub>SO<sub>4</sub> aqueous electrolyte solution under 100 mW cm<sup>−2</sup> (AM 1.5G) simulated sunlight revealed 2-fold improved photocurrent density for MoS<sub>2</sub>/TiO<sub>2</sub> heterostructure (∼135.7 <italic toggle=\"yes\">μ</italic>A cm<sup>−2</sup>) compared to that of bare TiO<sub>2</sub> (∼70 <italic toggle=\"yes\">μ</italic>A cm<sup>−2</sup>). This is attributed to extended light absorption and more catalytically active surface area resulting from MoS<sub>2</sub> functionalization of the TiO<sub>2</sub> nanotubes, which results in better PEC activity. This study provides a new insight to explore the performance of thin metal foil-based photoelectrode in PEC applications that can be beneficial to develop roll-to-roll device fabrication to advance futuristic flexible electronics.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad1694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
MoS2/TiO2 nanostructure provides a lot of advantages in photoelectrochemical (PEC) applications due to the absorption of the wide spectrum solar radiation, more catalytically active sites, proper band alignment, and better separation of photogenerated charge carriers. Here we report PEC water splitting studies of MoS2 thin film grown by chemical vapor deposition on TiO2 nanotubes fabricated on flexible thin Ti foil. Raman and x-ray diffraction analysis confirmed the polycrystalline growth of a few layers MoS2 on TiO2/Ti through their characteristic peaks. Field emission scanning electron microscopy revealed the nanotube surface morphology of TiO2 having a diameter in the range of 200–300 nm. The chemical and electronic composition of MoS2 and TiO2 were investigated by x-ray photoelectron spectroscopy. PEC measurements performed in 0.5 M Na2SO4 aqueous electrolyte solution under 100 mW cm−2 (AM 1.5G) simulated sunlight revealed 2-fold improved photocurrent density for MoS2/TiO2 heterostructure (∼135.7 μA cm−2) compared to that of bare TiO2 (∼70 μA cm−2). This is attributed to extended light absorption and more catalytically active surface area resulting from MoS2 functionalization of the TiO2 nanotubes, which results in better PEC activity. This study provides a new insight to explore the performance of thin metal foil-based photoelectrode in PEC applications that can be beneficial to develop roll-to-roll device fabrication to advance futuristic flexible electronics.