Numerical approaches for solution of hyperbolic difference equations on circle

Pub Date : 2024-01-03 DOI:10.1515/gmj-2023-2103
Allaberen Ashyralyev, Fatih Hezenci, Yasar Sozen
{"title":"Numerical approaches for solution of hyperbolic difference equations on circle","authors":"Allaberen Ashyralyev, Fatih Hezenci, Yasar Sozen","doi":"10.1515/gmj-2023-2103","DOIUrl":null,"url":null,"abstract":"The present paper considers nonlocal boundary value problems for hyperbolic equations on the circle <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"double-struck\">T</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2103_ineq_0001.png\" /> <jats:tex-math>\\mathbb{T}^{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The first-order modified difference scheme for the numerical solution of nonlocal boundary value problems for hyperbolic equations on a circle is presented. The stability and coercivity estimates in various Hölder norms for solutions of the difference schemes are established. Moreover, numerical examples are provided.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper considers nonlocal boundary value problems for hyperbolic equations on the circle T 1 \mathbb{T}^{1} . The first-order modified difference scheme for the numerical solution of nonlocal boundary value problems for hyperbolic equations on a circle is presented. The stability and coercivity estimates in various Hölder norms for solutions of the difference schemes are established. Moreover, numerical examples are provided.
分享
查看原文
圆上双曲差分方程的数值求解方法
本文研究了圆 T 1 \mathbb{T}^{1} 上双曲方程的非局部边界值问题。本文提出了用于圆上双曲方程非局部边界值问题数值求解的一阶修正差分方案。建立了差分方案解在各种赫尔德规范下的稳定性和矫顽力估计。此外,还提供了数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信