{"title":"Uptake of Fluorescein via a pH-Dependent Monocarboxylate Transporter by Human Kidney 2 (HK-2) Cells.","authors":"Takaharu Takiguchi, Kazuaki Sugio, Masayuki Masuda, Shotaro Sasaki, Seiji Miyauchi","doi":"10.1248/bpb.b23-00570","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we investigated whether a fluorescent probe for an organic anion transporter (OAT), fluorescein (FLS), could be accumulated by human kidney 2 (HK-2) cells derived from human kidney proximal tubular epithelia. HK-2 cells took up FLS in a pH-dependent and concentration-dependent manner. FLS accumulation by HK-2 cells was inhibited by monocarboxylic acids, ibuprofen, rosuvastatin, and indoleacetic acid but not by typical substrates for OATs. A typical protonophore, carbonyl cyanide p-trichloromethoxyphenylhydrazone completely abolished FLS accumulation by HK-2 cells. The FLS efflux process from the preloaded HK-2 cells exhibited substantial trans-stimulation by the excess amount of extracellular FLS transport inhibitable monocarboxylate compounds such as 2,4-dichloro phenoxyacetic acid, fluvastatin, ibuprofen, indoleacetic acid, salicylic acid and rosuvastatin, indicating that the FLS transporter can recognize and accumulate them into the cells in a pH-dependent manner. The involvement of the FLS transporter in the reabsorption of monocarboxylic compounds was indicated by demonstrating that the pH-dependent FLS uptake is inhibited by various monocarboxylates in rabbit renal brush border membrane vesicles. pH-dependent FLS uptake was trans-stimulated by the inhibitable monocarboxylates. Collectively, the present data indicate that the pH-dependent transporters expressed in HK-2 cells are involved in the reabsorption of monocarboxylates from the urinary fluid into the tubular epithelia.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b23-00570","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we investigated whether a fluorescent probe for an organic anion transporter (OAT), fluorescein (FLS), could be accumulated by human kidney 2 (HK-2) cells derived from human kidney proximal tubular epithelia. HK-2 cells took up FLS in a pH-dependent and concentration-dependent manner. FLS accumulation by HK-2 cells was inhibited by monocarboxylic acids, ibuprofen, rosuvastatin, and indoleacetic acid but not by typical substrates for OATs. A typical protonophore, carbonyl cyanide p-trichloromethoxyphenylhydrazone completely abolished FLS accumulation by HK-2 cells. The FLS efflux process from the preloaded HK-2 cells exhibited substantial trans-stimulation by the excess amount of extracellular FLS transport inhibitable monocarboxylate compounds such as 2,4-dichloro phenoxyacetic acid, fluvastatin, ibuprofen, indoleacetic acid, salicylic acid and rosuvastatin, indicating that the FLS transporter can recognize and accumulate them into the cells in a pH-dependent manner. The involvement of the FLS transporter in the reabsorption of monocarboxylic compounds was indicated by demonstrating that the pH-dependent FLS uptake is inhibited by various monocarboxylates in rabbit renal brush border membrane vesicles. pH-dependent FLS uptake was trans-stimulated by the inhibitable monocarboxylates. Collectively, the present data indicate that the pH-dependent transporters expressed in HK-2 cells are involved in the reabsorption of monocarboxylates from the urinary fluid into the tubular epithelia.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.