{"title":"Modeling of radial growth curves and radial variation of basic density in Chamaecyparis obtusa planted in two progeny test sites","authors":"Yusuke Takahashi, Futoshi Ishiguri, Michinari Matsushita, Ikumi Nezu, Jyunichi Ohshima, Shinso Yokota, Akira Tamura, Miyoko Tsubomura, Makoto Takahashi","doi":"10.1186/s10086-023-02116-y","DOIUrl":null,"url":null,"abstract":"The objectives of the present study are to clarify the effect of macro- and micro-environment on the radial growth patterns and radial variation patterns of basic density in hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.). We evaluated the radial variation patterns of cumulative annual ring width (as radial growth pattern) and basic density by modeling methods using hinoki cypress 36 families planted at two progeny test sites. In addition, narrow-sense heritability and correlation between sites for annual ring width and basic density were investigated. As the results of modeling for radial growth patterns, radial growth patterns slightly differed between sites. In addition, the stem diameter reaching the plateau might be varied among blocks in a site. On the other hand, radial variation of basic density was affected by genetic factors rather than blocks in the site. However, the radial growth rate may somewhat affect the radial variation of basic density. The heritability and correlation coefficients between sites in basic density were higher than those of annual ring width. Therefore, although radial growth in hinoki cypress varies by the effects of micro- and macro-environmental factors and has some influence on the radial variation of basic density, basic density is more strongly affected by genetic factors than by these influences, allowing for effective improvement for wood density by tree breeding program.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"194 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s10086-023-02116-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The objectives of the present study are to clarify the effect of macro- and micro-environment on the radial growth patterns and radial variation patterns of basic density in hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.). We evaluated the radial variation patterns of cumulative annual ring width (as radial growth pattern) and basic density by modeling methods using hinoki cypress 36 families planted at two progeny test sites. In addition, narrow-sense heritability and correlation between sites for annual ring width and basic density were investigated. As the results of modeling for radial growth patterns, radial growth patterns slightly differed between sites. In addition, the stem diameter reaching the plateau might be varied among blocks in a site. On the other hand, radial variation of basic density was affected by genetic factors rather than blocks in the site. However, the radial growth rate may somewhat affect the radial variation of basic density. The heritability and correlation coefficients between sites in basic density were higher than those of annual ring width. Therefore, although radial growth in hinoki cypress varies by the effects of micro- and macro-environmental factors and has some influence on the radial variation of basic density, basic density is more strongly affected by genetic factors than by these influences, allowing for effective improvement for wood density by tree breeding program.
期刊介绍:
The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.