An internet reviews topic hierarchy mining method based on modified continuous renormalization procedure

Lin Qi, Feiyan Guo, Jian Zhang, Yuwei Wang
{"title":"An internet reviews topic hierarchy mining method based on modified continuous renormalization procedure","authors":"Lin Qi, Feiyan Guo, Jian Zhang, Yuwei Wang","doi":"arxiv-2401.01118","DOIUrl":null,"url":null,"abstract":"Mining the hierarchical structure of Internet review topics and realizing a\nfine classification of review texts can help alleviate users' information\noverload. However, existing hierarchical topic classification methods primarily\nrely on external corpora and human intervention. This study proposes a Modified\nContinuous Renormalization (MCR) procedure that acts on the keyword\nco-occurrence network with fractal characteristics to achieve the topic\nhierarchy mining. First, the fractal characteristics in the keyword\nco-occurrence network of Internet review text are identified using a\nbox-covering algorithm for the first time. Then, the MCR algorithm established\non the edge adjacency entropy and the box distance is proposed to obtain the\ntopic hierarchy in the keyword co-occurrence network. Verification data from\nthe Dangdang.com book reviews shows that the MCR constructs topic hierarchies\nwith greater coherence and independence than the HLDA and the Louvain\nalgorithms. Finally, reliable review text classification is achieved using the\nMCR extended bottom level topic categories. The accuracy rate (P), recall rate\n(R) and F1 value of Internet review text classification obtained from the\nMCR-based topic hierarchy are significantly improved compared to four target\ntext classification algorithms.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"407 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.01118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mining the hierarchical structure of Internet review topics and realizing a fine classification of review texts can help alleviate users' information overload. However, existing hierarchical topic classification methods primarily rely on external corpora and human intervention. This study proposes a Modified Continuous Renormalization (MCR) procedure that acts on the keyword co-occurrence network with fractal characteristics to achieve the topic hierarchy mining. First, the fractal characteristics in the keyword co-occurrence network of Internet review text are identified using a box-covering algorithm for the first time. Then, the MCR algorithm established on the edge adjacency entropy and the box distance is proposed to obtain the topic hierarchy in the keyword co-occurrence network. Verification data from the Dangdang.com book reviews shows that the MCR constructs topic hierarchies with greater coherence and independence than the HLDA and the Louvain algorithms. Finally, reliable review text classification is achieved using the MCR extended bottom level topic categories. The accuracy rate (P), recall rate (R) and F1 value of Internet review text classification obtained from the MCR-based topic hierarchy are significantly improved compared to four target text classification algorithms.
基于修正的连续重正化程序的网络评论主题层次挖掘方法
挖掘互联网评论主题的层次结构并实现评论文本的精细分类有助于减轻用户的信息超载。然而,现有的分层主题分类方法主要依赖于外部语料库和人工干预。本研究提出了一种修正连续重正化(MCR)过程,该过程作用于具有分形特征的关键词共现网络,以实现主题层次挖掘。首先,利用盒式覆盖算法首次识别了网络评论文本关键词共现网络中的分形特征。然后,提出了建立在边缘邻接熵和盒距离基础上的 MCR 算法,从而得到关键词共现网络中的主题层次。来自当当网书评的验证数据表明,与 HLDA 和 Louvainal 算法相比,MCR 算法构建的主题层次结构具有更强的一致性和独立性。最后,使用 MCR 扩展的底层主题类别实现了可靠的书评文本分类。与四种目标文本分类算法相比,基于 MCR 的主题层次结构得到的网络评论文本分类的准确率(P)、召回率(R)和 F1 值都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信