{"title":"From $$L^p$$ bounds to Gromov–Hausdorff convergence of Riemannian manifolds","authors":"Brian Allen","doi":"10.1007/s10711-023-00875-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper we provide a way of taking <span>\\(L^p\\)</span>, <span>\\(p > \\frac{m}{2}\\)</span> bounds on a <span>\\(m-\\)</span> dimensional Riemannian metric and transforming that into Hölder bounds for the corresponding distance function. One can think of this new estimate as a type of Morrey inequality for Riemannian manifolds where one thinks of a Riemannian metric as the gradient of the corresponding distance function so that the <span>\\(L^p\\)</span>, <span>\\(p > \\frac{m}{2}\\)</span> bound analogously implies Hölder control on the distance function. This new estimate is then used to state a compactness theorem, another theorem which guarantees convergence to a particular Riemmanian manifold, and a new scalar torus stability result. We expect these results to be useful for proving geometric stability results in the presence of scalar curvature bounds when Gromov–Hausdorff convergence can be achieved.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00875-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we provide a way of taking \(L^p\), \(p > \frac{m}{2}\) bounds on a \(m-\) dimensional Riemannian metric and transforming that into Hölder bounds for the corresponding distance function. One can think of this new estimate as a type of Morrey inequality for Riemannian manifolds where one thinks of a Riemannian metric as the gradient of the corresponding distance function so that the \(L^p\), \(p > \frac{m}{2}\) bound analogously implies Hölder control on the distance function. This new estimate is then used to state a compactness theorem, another theorem which guarantees convergence to a particular Riemmanian manifold, and a new scalar torus stability result. We expect these results to be useful for proving geometric stability results in the presence of scalar curvature bounds when Gromov–Hausdorff convergence can be achieved.