{"title":"Causal Inference in Recommender Systems: A Survey and Future Directions","authors":"Chen Gao, Yu Zheng, Wenjie Wang, Fuli Feng, Xiangnan He, Yong Li","doi":"10.1145/3639048","DOIUrl":null,"url":null,"abstract":"<p>Recommender systems have become crucial in information filtering nowadays. Existing recommender systems extract user preferences based on the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, unfortunately, the real world is driven by <i>causality</i>, not just correlation, and correlation does not imply causation. For instance, recommender systems might recommend a battery charger to a user after buying a phone, where the latter can serve as the cause of the former; such a causal relation cannot be reversed. Recently, to address this, researchers in recommender systems have begun utilizing causal inference to extract causality, thereby enhancing the recommender system. In this survey, we offer a comprehensive review of the literature on causal inference-based recommendation. Initially, we introduce the fundamental concepts of both recommender system and causal inference as the foundation for subsequent content. We then highlight the typical issues faced by non-causality recommender system. Following that, we thoroughly review the existing work on causal inference-based recommender systems, based on a taxonomy of three-aspect challenges that causal inference can address. Finally, we discuss the open problems in this critical research area and suggest important potential future works.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639048","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 27
Abstract
Recommender systems have become crucial in information filtering nowadays. Existing recommender systems extract user preferences based on the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, unfortunately, the real world is driven by causality, not just correlation, and correlation does not imply causation. For instance, recommender systems might recommend a battery charger to a user after buying a phone, where the latter can serve as the cause of the former; such a causal relation cannot be reversed. Recently, to address this, researchers in recommender systems have begun utilizing causal inference to extract causality, thereby enhancing the recommender system. In this survey, we offer a comprehensive review of the literature on causal inference-based recommendation. Initially, we introduce the fundamental concepts of both recommender system and causal inference as the foundation for subsequent content. We then highlight the typical issues faced by non-causality recommender system. Following that, we thoroughly review the existing work on causal inference-based recommender systems, based on a taxonomy of three-aspect challenges that causal inference can address. Finally, we discuss the open problems in this critical research area and suggest important potential future works.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.