Morteza Moradi, Christie L. Warburton, Laercio Ribeiro Porto-Neto, Luis F. P. Silva
{"title":"Estimating the heritability of nitrogen and carbon isotopes in the tail hair of beef cattle","authors":"Morteza Moradi, Christie L. Warburton, Laercio Ribeiro Porto-Neto, Luis F. P. Silva","doi":"10.1186/s12711-023-00870-7","DOIUrl":null,"url":null,"abstract":"The natural abundance of nitrogen (δ15N) and carbon (δ13C) isotopes in animal tissues are used to estimate an animal’s efficiency in nitrogen utilization, and their feed conversion efficiency, especially in tropical grazing systems with prolonged protein restriction. It is postulated that selection for improving these two characteristics (δ15N and δ13C) would assist the optimisation of the adaptation in ever-changing environments, particularly in response to climate change. The aim of this study was to determine the heritability of δ15N and δ13C in the tail hair of tropically adapted beef cattle to validate their inclusion in genetic breeding programs. In total, 492 steers from two breeds, Brahman (n = 268) and Droughtmaster (n = 224) were used in this study. These steers were managed in two mixed breed contemporary groups across two years (year of weaning): steers weaned in 2019 (n = 250) and 2020 (n = 242). Samples of tail switch hair representing hair segments grown during the dry season were collected and analysed for δ15N and δ13C with isotope-ratio mass spectrometry. Heritability and variance components were estimated in a univariate multibreed (and single breed) animal model in WOMBAT and ASReml using three generations of full pedigree. The estimated heritability of both traits was significantly different from 0, i.e. 0.43 ± 0.14 and 0.41 ± 0.15 for δ15N and δ13C, respectively. These traits had favourable moderate to high genetic and phenotypic correlations (− 0.78 ± 0.16 and − 0.40 ± 0.04, respectively). The study also provides informative single-breed results in spite of the limited sample size, with estimated heritability values of 0.37 ± 0.19 and 0.19 ± 0.17 for δ15N and δ13C in Brahman, and 0.36 ± 0.21 and 0.46 ± 0.22 for δ15N and δ13C in Droughtmaster, respectively. The findings of this study show, for the first time, that the natural abundances of both nitrogen and carbon isotopes in the tail hair in cattle may be moderately heritable. With further research and validation, tail hair isotopes can become a practical tool for the large-scale selection of more efficient cattle.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"5 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-023-00870-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The natural abundance of nitrogen (δ15N) and carbon (δ13C) isotopes in animal tissues are used to estimate an animal’s efficiency in nitrogen utilization, and their feed conversion efficiency, especially in tropical grazing systems with prolonged protein restriction. It is postulated that selection for improving these two characteristics (δ15N and δ13C) would assist the optimisation of the adaptation in ever-changing environments, particularly in response to climate change. The aim of this study was to determine the heritability of δ15N and δ13C in the tail hair of tropically adapted beef cattle to validate their inclusion in genetic breeding programs. In total, 492 steers from two breeds, Brahman (n = 268) and Droughtmaster (n = 224) were used in this study. These steers were managed in two mixed breed contemporary groups across two years (year of weaning): steers weaned in 2019 (n = 250) and 2020 (n = 242). Samples of tail switch hair representing hair segments grown during the dry season were collected and analysed for δ15N and δ13C with isotope-ratio mass spectrometry. Heritability and variance components were estimated in a univariate multibreed (and single breed) animal model in WOMBAT and ASReml using three generations of full pedigree. The estimated heritability of both traits was significantly different from 0, i.e. 0.43 ± 0.14 and 0.41 ± 0.15 for δ15N and δ13C, respectively. These traits had favourable moderate to high genetic and phenotypic correlations (− 0.78 ± 0.16 and − 0.40 ± 0.04, respectively). The study also provides informative single-breed results in spite of the limited sample size, with estimated heritability values of 0.37 ± 0.19 and 0.19 ± 0.17 for δ15N and δ13C in Brahman, and 0.36 ± 0.21 and 0.46 ± 0.22 for δ15N and δ13C in Droughtmaster, respectively. The findings of this study show, for the first time, that the natural abundances of both nitrogen and carbon isotopes in the tail hair in cattle may be moderately heritable. With further research and validation, tail hair isotopes can become a practical tool for the large-scale selection of more efficient cattle.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.