Development of an individual display optimization system based on deep convolutional neural network transition learning for somatostatin receptor scintigraphy.
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Development of an individual display optimization system based on deep convolutional neural network transition learning for somatostatin receptor scintigraphy.","authors":"Shun Matsumoto, Yuki Nakahara, Teppei Yonezawa, Yuto Nakamura, Masahiro Tanabe, Mayumi Higashi, Junji Shiraishi","doi":"10.1007/s12194-023-00766-7","DOIUrl":null,"url":null,"abstract":"<p><p>Somatostatin receptor scintigraphy (SRS) is an essential examination for the diagnosis of neuroendocrine tumors (NETs). This study developed a method to individually optimize the display of whole-body SRS images using a deep convolutional neural network (DCNN) reconstructed by transfer learning of a DCNN constructed using Gallium-67 (<sup>67</sup>Ga) images. The initial DCNN was constructed using U-Net to optimize the display of <sup>67</sup>Ga images (493 cases/986 images), and a DCNN with transposed weight coefficients was reconstructed for the optimization of whole-body SRS images (133 cases/266 images). A DCNN was constructed for each observer using reference display conditions estimated in advance. Furthermore, to eliminate information loss in the original image, a grayscale linear process is performed based on the DCNN output image to obtain the final linearly corrected DCNN (LcDCNN) image. To verify the usefulness of the proposed method, an observer study using a paired-comparison method was conducted on the original, reference, and LcDCNN images of 15 cases with 30 images. The paired comparison method showed that in most cases (29/30), the LcDCNN images were significantly superior to the original images in terms of display conditions. When comparing the LcDCNN and reference images, the number of LcDCNN and reference images that were superior to each other in the display condition was 17 and 13, respectively, and in both cases, 6 of these images showed statistically significant differences. The optimized SRS images obtained using the proposed method, while reflecting the observer's preference, were superior to the conventional manually adjusted images.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-023-00766-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Somatostatin receptor scintigraphy (SRS) is an essential examination for the diagnosis of neuroendocrine tumors (NETs). This study developed a method to individually optimize the display of whole-body SRS images using a deep convolutional neural network (DCNN) reconstructed by transfer learning of a DCNN constructed using Gallium-67 (67Ga) images. The initial DCNN was constructed using U-Net to optimize the display of 67Ga images (493 cases/986 images), and a DCNN with transposed weight coefficients was reconstructed for the optimization of whole-body SRS images (133 cases/266 images). A DCNN was constructed for each observer using reference display conditions estimated in advance. Furthermore, to eliminate information loss in the original image, a grayscale linear process is performed based on the DCNN output image to obtain the final linearly corrected DCNN (LcDCNN) image. To verify the usefulness of the proposed method, an observer study using a paired-comparison method was conducted on the original, reference, and LcDCNN images of 15 cases with 30 images. The paired comparison method showed that in most cases (29/30), the LcDCNN images were significantly superior to the original images in terms of display conditions. When comparing the LcDCNN and reference images, the number of LcDCNN and reference images that were superior to each other in the display condition was 17 and 13, respectively, and in both cases, 6 of these images showed statistically significant differences. The optimized SRS images obtained using the proposed method, while reflecting the observer's preference, were superior to the conventional manually adjusted images.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.