Li Niu, Shengwei Zhong, Zhiyu Yang, Baochun Tan, Junjie Zhao, Wei Zhou, Peng Zhang, Lingchen Hua, Weibin Sun, Houxuan Li
{"title":"Mask refinement network for tooth segmentation on panoramic radiographs.","authors":"Li Niu, Shengwei Zhong, Zhiyu Yang, Baochun Tan, Junjie Zhao, Wei Zhou, Peng Zhang, Lingchen Hua, Weibin Sun, Houxuan Li","doi":"10.1093/dmfr/twad012","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Instance-level tooth segmentation extracts abundant localization and shape information from panoramic radiographs (PRs). The aim of this study was to evaluate the performance of a mask refinement network that extracts precise tooth edges.</p><p><strong>Methods: </strong>A public dataset which consists of 543 PRs and 16211 labelled teeth was utilized. The structure of a typical Mask Region-based Convolutional Neural Network (Mask RCNN) was used as the baseline. A novel loss function was designed focus on producing accurate mask edges. In addition to our proposed method, 3 existing tooth segmentation methods were also implemented on the dataset for comparative analysis. The average precisions (APs), mean intersection over union (mIoU), and mean Hausdorff distance (mHAU) were exploited to evaluate the performance of the network.</p><p><strong>Results: </strong>A novel mask refinement region-based convolutional neural network was designed based on Mask RCNN architecture to extract refined masks for individual tooth on PRs. A total of 3311 teeth were correctly detected from 3382 tested teeth in 111 PRs. The AP, precision, and recall were 0.686, 0.979, and 0.952, respectively. Moreover, the mIoU and mHAU achieved 0.941 and 9.7, respectively, which are significantly better than the other existing segmentation methods.</p><p><strong>Conclusions: </strong>This study proposed an efficient deep learning algorithm for accurately extracting the mask of any individual tooth from PRs. Precise tooth masks can provide valuable reference for clinical diagnosis and treatment. This algorithm is a fundamental basis for further automated processing applications.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":" ","pages":"127-136"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/dmfr/twad012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Instance-level tooth segmentation extracts abundant localization and shape information from panoramic radiographs (PRs). The aim of this study was to evaluate the performance of a mask refinement network that extracts precise tooth edges.
Methods: A public dataset which consists of 543 PRs and 16211 labelled teeth was utilized. The structure of a typical Mask Region-based Convolutional Neural Network (Mask RCNN) was used as the baseline. A novel loss function was designed focus on producing accurate mask edges. In addition to our proposed method, 3 existing tooth segmentation methods were also implemented on the dataset for comparative analysis. The average precisions (APs), mean intersection over union (mIoU), and mean Hausdorff distance (mHAU) were exploited to evaluate the performance of the network.
Results: A novel mask refinement region-based convolutional neural network was designed based on Mask RCNN architecture to extract refined masks for individual tooth on PRs. A total of 3311 teeth were correctly detected from 3382 tested teeth in 111 PRs. The AP, precision, and recall were 0.686, 0.979, and 0.952, respectively. Moreover, the mIoU and mHAU achieved 0.941 and 9.7, respectively, which are significantly better than the other existing segmentation methods.
Conclusions: This study proposed an efficient deep learning algorithm for accurately extracting the mask of any individual tooth from PRs. Precise tooth masks can provide valuable reference for clinical diagnosis and treatment. This algorithm is a fundamental basis for further automated processing applications.
期刊介绍:
Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging.
Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology.
The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal.
Quick Facts:
- 2015 Impact Factor - 1.919
- Receipt to first decision - average of 3 weeks
- Acceptance to online publication - average of 3 weeks
- Open access option
- ISSN: 0250-832X
- eISSN: 1476-542X