{"title":"Constrained multiobjective optimization of expensive black-box functions using a heuristic branch-and-bound approach","authors":"","doi":"10.1007/s10898-023-01336-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>While constrained, multiobjective optimization is generally very difficult, there is a special case in which such problems can be solved with a simple, elegant branch-and-bound algorithm. This special case is when the objective and constraint functions are Lipschitz continuous with known Lipschitz constants. Given these Lipschitz constants, one can compute lower bounds on the functions over subregions of the search space. This allows one to iteratively partition the search space into rectangles, deleting those rectangles which—based on the lower bounds—contain points that are all provably infeasible or provably dominated by previously sampled point(s). As the algorithm proceeds, the rectangles that have not been deleted provide a tight covering of the Pareto set in the input space. Unfortunately, for black-box optimization this elegant algorithm cannot be applied, as we would not know the Lipschitz constants. In this paper, we show how one can heuristically extend this branch-and-bound algorithm to the case when the problem functions are black-box using an approach similar to that used in the well-known DIRECT global optimization algorithm. We call the resulting method “simDIRECT.” Initial experience with simDIRECT on test problems suggests that it performs similar to, or better than, multiobjective evolutionary algorithms when solving problems with small numbers of variables (up to 12) and a limited number of runs (up to 600). </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01336-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While constrained, multiobjective optimization is generally very difficult, there is a special case in which such problems can be solved with a simple, elegant branch-and-bound algorithm. This special case is when the objective and constraint functions are Lipschitz continuous with known Lipschitz constants. Given these Lipschitz constants, one can compute lower bounds on the functions over subregions of the search space. This allows one to iteratively partition the search space into rectangles, deleting those rectangles which—based on the lower bounds—contain points that are all provably infeasible or provably dominated by previously sampled point(s). As the algorithm proceeds, the rectangles that have not been deleted provide a tight covering of the Pareto set in the input space. Unfortunately, for black-box optimization this elegant algorithm cannot be applied, as we would not know the Lipschitz constants. In this paper, we show how one can heuristically extend this branch-and-bound algorithm to the case when the problem functions are black-box using an approach similar to that used in the well-known DIRECT global optimization algorithm. We call the resulting method “simDIRECT.” Initial experience with simDIRECT on test problems suggests that it performs similar to, or better than, multiobjective evolutionary algorithms when solving problems with small numbers of variables (up to 12) and a limited number of runs (up to 600).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.