Universality of critical dynamics on a complex network

Mrinal Sarkar, Tilman Enss, Nicolò Defenu
{"title":"Universality of critical dynamics on a complex network","authors":"Mrinal Sarkar, Tilman Enss, Nicolò Defenu","doi":"arxiv-2401.00092","DOIUrl":null,"url":null,"abstract":"We investigate the role of the spectral dimension $d_s$ in determining the\nuniversality of phase transitions on a complex network. Due to its structural\nheterogeneity, a complex network generally acts as a disordered system.\nSpecifically, we study the synchronization and entrainment transitions in the\nnonequilibrium dynamics of the Kuramoto model and the phase transition of the\nequilibrium dynamics of the classical $XY$ model, thereby covering a broad\nspectrum from nonlinear dynamics to statistical and condensed matter physics.\nUsing linear theory, we obtain a general relationship between the dynamics\noccurring on the network and the underlying network properties. This yields the\nlower critical spectral dimension of the phase synchronization and entrainment\ntransitions in the Kuramoto model as $d_s=4$ and $d_s=2$ respectively, whereas\nfor the phase transition in the $XY$ model it is $d_s=2$. To test our\ntheoretical hypotheses, we employ a network where any two nodes on the network\nare connected with a probability proportional to a power law of the distance\nbetween the nodes; this realizes any desired $d_s\\in [1, \\infty)$. Our detailed\nnumerical study agrees well with the prediction of linear theory for the phase\nsynchronization transition in the Kuramoto model. However, it shows a clear\nentrainment transition in the Kuramoto model and phase transition in the $XY$\nmodel at $d_s \\gtrsim 3$, not $d_s=2$ as predicted by linear theory. Our study\nindicates that network disorder in the region $2 \\leq d_s \\lesssim 3$ seems to\nbe relevant and have a profound effect on the dynamics.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the role of the spectral dimension $d_s$ in determining the universality of phase transitions on a complex network. Due to its structural heterogeneity, a complex network generally acts as a disordered system. Specifically, we study the synchronization and entrainment transitions in the nonequilibrium dynamics of the Kuramoto model and the phase transition of the equilibrium dynamics of the classical $XY$ model, thereby covering a broad spectrum from nonlinear dynamics to statistical and condensed matter physics. Using linear theory, we obtain a general relationship between the dynamics occurring on the network and the underlying network properties. This yields the lower critical spectral dimension of the phase synchronization and entrainment transitions in the Kuramoto model as $d_s=4$ and $d_s=2$ respectively, whereas for the phase transition in the $XY$ model it is $d_s=2$. To test our theoretical hypotheses, we employ a network where any two nodes on the network are connected with a probability proportional to a power law of the distance between the nodes; this realizes any desired $d_s\in [1, \infty)$. Our detailed numerical study agrees well with the prediction of linear theory for the phase synchronization transition in the Kuramoto model. However, it shows a clear entrainment transition in the Kuramoto model and phase transition in the $XY$ model at $d_s \gtrsim 3$, not $d_s=2$ as predicted by linear theory. Our study indicates that network disorder in the region $2 \leq d_s \lesssim 3$ seems to be relevant and have a profound effect on the dynamics.
复杂网络上临界动力学的普遍性
我们研究了频谱维度 $d_s$ 在决定复杂网络相变普遍性中的作用。具体来说,我们研究了仓本模型单平衡动力学中的同步和夹带转变,以及经典 $XY$ 模型平衡动力学的相变,从而涵盖了从非线性动力学到统计和凝聚态物理学的广泛领域。这就得出了仓本模型中相位同步和夹带转换的临界谱维度分别为 d_s=4$ 和 d_s=2$,而 XY$ 模型中相位转换的临界谱维度为 d_s=2$。为了检验我们的理论假设,我们使用了一个网络,在这个网络中,网络上的任何两个节点都以与节点间距离幂律成正比的概率相连;这就实现了[1, \infty]$中任何所需的$d_s$。我们的详细数值研究与线性理论对仓本模型中相位同步转换的预测十分吻合。然而,它显示了 Kuramoto 模型中的透明rainment 过渡和 $XY$ 模型中的相变在 $d_s \gtrsim 3$,而不是线性理论预测的 $d_s=2$。我们的研究表明,在 2 \leq d_s \lesssim 3$ 区域的网络无序似乎是相关的,并对动力学有深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信