BRITD: behavior rhythm insider threat detection with time awareness and user adaptation

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"BRITD: behavior rhythm insider threat detection with time awareness and user adaptation","authors":"","doi":"10.1186/s42400-023-00190-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Researchers usually detect insider threats by analyzing user behavior. The time information of user behavior is an important concern in internal threat detection. Existing works on insider threat detection fail to make full use of the time information, which leads to their poor detection performance. In this paper, we propose a novel behavioral feature extraction scheme: we implicitly encode absolute time information in the behavioral feature sequences and use a feature sequence construction method taking covariance into account to make our scheme adaptive to users. We select Stacked Bidirectional LSTM and Feedforward Neural Network to build a deep learning-based insider threat detection model: Behavior Rhythm Insider Threat Detection (BRITD). BRITD is universally applicable to various insider threat scenarios, and it has good insider threat detection performance: it achieves an AUC of 0.9730 and a precision of 0.8072 with the CMU CERT dataset, which exceeds all baselines.</p> <span> <h3>Graphical Abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/42400_2023_190_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":36402,"journal":{"name":"Cybersecurity","volume":"52 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42400-023-00190-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers usually detect insider threats by analyzing user behavior. The time information of user behavior is an important concern in internal threat detection. Existing works on insider threat detection fail to make full use of the time information, which leads to their poor detection performance. In this paper, we propose a novel behavioral feature extraction scheme: we implicitly encode absolute time information in the behavioral feature sequences and use a feature sequence construction method taking covariance into account to make our scheme adaptive to users. We select Stacked Bidirectional LSTM and Feedforward Neural Network to build a deep learning-based insider threat detection model: Behavior Rhythm Insider Threat Detection (BRITD). BRITD is universally applicable to various insider threat scenarios, and it has good insider threat detection performance: it achieves an AUC of 0.9730 and a precision of 0.8072 with the CMU CERT dataset, which exceeds all baselines.

Graphical Abstract

Abstract Image

BRITD:具有时间感知和用户适应性的行为节奏内部威胁检测
摘要 研究人员通常通过分析用户行为来检测内部威胁。用户行为的时间信息是内部威胁检测的一个重要关注点。现有的内部威胁检测工作未能充分利用时间信息,导致检测效果不佳。本文提出了一种新颖的行为特征提取方案:我们在行为特征序列中隐含了绝对时间信息,并使用考虑协方差的特征序列构建方法,使我们的方案对用户具有自适应能力。我们选择堆叠双向 LSTM 和前馈神经网络来构建基于深度学习的内部威胁检测模型:行为节奏内部威胁检测(BRITD)。BRITD普遍适用于各种内部威胁场景,并且具有良好的内部威胁检测性能:在CMU CERT数据集上,它的AUC达到了0.9730,精度达到了0.8072,超过了所有基线。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybersecurity
Cybersecurity Computer Science-Information Systems
CiteScore
7.30
自引率
0.00%
发文量
77
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信