Sequential online monitoring for autoregressive time series of counts

Pub Date : 2024-01-02 DOI:10.1007/s42952-023-00247-y
{"title":"Sequential online monitoring for autoregressive time series of counts","authors":"","doi":"10.1007/s42952-023-00247-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This study considers the online monitoring problem for detecting the parameter change in time series of counts. For this task, we construct a monitoring process based on the residuals obtained from integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models. We consider this problem within a more general framework using martingale difference sequences as the monitoring problem on GARCH-type processes based on the residuals or score vectors can be viewed as a special case of the monitoring problems on martingale differences. The limiting behavior of the stopping rule is investigated in this general set-up and is applied to the INGARCH processes. To assess the performance of our method, we conduct Monte Carlo simulations. A real data analysis is also provided for illustration. Our findings in this empirical study demonstrate the validity of the proposed monitoring process.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-023-00247-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study considers the online monitoring problem for detecting the parameter change in time series of counts. For this task, we construct a monitoring process based on the residuals obtained from integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models. We consider this problem within a more general framework using martingale difference sequences as the monitoring problem on GARCH-type processes based on the residuals or score vectors can be viewed as a special case of the monitoring problems on martingale differences. The limiting behavior of the stopping rule is investigated in this general set-up and is applied to the INGARCH processes. To assess the performance of our method, we conduct Monte Carlo simulations. A real data analysis is also provided for illustration. Our findings in this empirical study demonstrate the validity of the proposed monitoring process.

分享
查看原文
自回归计数时间序列的连续在线监测
摘要 本研究探讨了检测计数时间序列参数变化的在线监测问题。为此,我们根据整值广义自回归条件异速(INGARCH)模型得到的残差构建了一个监测过程。由于基于残差或得分向量的 GARCH 类型过程的监控问题可视为马氏差分监控问题的特例,因此我们在使用马氏差分序列的更一般框架内考虑这一问题。在这种一般设置中,研究了停止规则的极限行为,并将其应用于 INGARCH 过程。为了评估我们方法的性能,我们进行了蒙特卡罗模拟。我们还提供了真实数据分析,以作说明。我们的实证研究结果证明了所建议的监控过程的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信