A Numerical Investigation into the Influence of Bionic Ridge Structures on the Cavitation Performance of Marine Propellers

IF 2.7 4区 工程技术 Q2 ENGINEERING, CIVIL
Jie Yang, Hongtao Gao, Yuying Yan
{"title":"A Numerical Investigation into the Influence of Bionic Ridge Structures on the Cavitation Performance of Marine Propellers","authors":"Jie Yang, Hongtao Gao, Yuying Yan","doi":"10.1007/s00773-023-00976-z","DOIUrl":null,"url":null,"abstract":"<p>With the development of the large and high-speed ships, the cavitation and radiated noise of marine propellers have been more and more concerned. This paper presents a numerical simulation of marine propellers with the ridge structures, inspired by the airfoils with the bionic ridge surfaces. The bionic method is applied to redesign the blade sections of a marine propeller, and the ridge structures are arranged between the leading edge and the thickest point. Four bionic propellers are established by changing the style and distribution area of the ridge structures on the blade surface. The cavitation morphology, pressure distribution and open water characteristics are analyzed with the software STAR CCM + . The numerical model is validated with the test data and the results show that the ridged structures can make the low-pressure area on the blade surface more dispersed and suppress cavitation. Compared with the prototype propeller, the four bionic propellers with the ridge structures can reduce the cavitation area by 26% (with an advance speed coefficient of 0.5) to 30% (with an advance speed coefficient of 0.3) at medium and low advance speeds. Besides, one of the bionic propellers can improve the thrust and efficiency by 14.93% and 1.61% respectively at high advance speeds.</p>","PeriodicalId":16334,"journal":{"name":"Journal of Marine Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00773-023-00976-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of the large and high-speed ships, the cavitation and radiated noise of marine propellers have been more and more concerned. This paper presents a numerical simulation of marine propellers with the ridge structures, inspired by the airfoils with the bionic ridge surfaces. The bionic method is applied to redesign the blade sections of a marine propeller, and the ridge structures are arranged between the leading edge and the thickest point. Four bionic propellers are established by changing the style and distribution area of the ridge structures on the blade surface. The cavitation morphology, pressure distribution and open water characteristics are analyzed with the software STAR CCM + . The numerical model is validated with the test data and the results show that the ridged structures can make the low-pressure area on the blade surface more dispersed and suppress cavitation. Compared with the prototype propeller, the four bionic propellers with the ridge structures can reduce the cavitation area by 26% (with an advance speed coefficient of 0.5) to 30% (with an advance speed coefficient of 0.3) at medium and low advance speeds. Besides, one of the bionic propellers can improve the thrust and efficiency by 14.93% and 1.61% respectively at high advance speeds.

Abstract Image

仿生脊结构对船用螺旋桨气蚀性能影响的数值研究
随着大型高速船舶的发展,船用螺旋桨的气蚀和辐射噪声越来越受到关注。本文受具有仿生脊面的机翼的启发,对具有脊面结构的船用螺旋桨进行了数值模拟。仿生方法用于重新设计船用螺旋桨的叶片部分,脊结构布置在前缘和最厚点之间。通过改变桨叶表面脊状结构的样式和分布面积,建立了四种仿生螺旋桨。利用 STAR CCM + 软件分析了空化形态、压力分布和开放水域特性。数值模型与试验数据进行了验证,结果表明,脊状结构可使桨叶表面的低压区更加分散,抑制气蚀。与原型螺旋桨相比,四种具有脊状结构的仿生螺旋桨在中低推进速度下可减少 26%(推进速度系数为 0.5)至 30%(推进速度系数为 0.3)的气蚀面积。此外,其中一种仿生螺旋桨在高推进速度下可将推力和效率分别提高 14.93% 和 1.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Marine Science and Technology
Journal of Marine Science and Technology 工程技术-工程:海洋
CiteScore
5.60
自引率
3.80%
发文量
47
审稿时长
7.5 months
期刊介绍: The Journal of Marine Science and Technology (JMST), presently indexed in EI and SCI Expanded, publishes original, high-quality, peer-reviewed research papers on marine studies including engineering, pure and applied science, and technology. The full text of the published papers is also made accessible at the JMST website to allow a rapid circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信