{"title":"Soft-controlled quantum gate with enhanced robustness and undegraded dynamics in Rydberg atoms","authors":"Qiaolin Wu, Jun Xing, Hongda Yin","doi":"10.1140/epjqt/s40507-023-00211-z","DOIUrl":null,"url":null,"abstract":"<div><p>Rydberg atoms have exhibited excellent potentials to become a competent platform of implementing quantum computation, which demands to execute various quantum gates fast and faithfully. We propose a dynamic mechanism of two interacting Rydberg atoms for implementing a high-fidelity SWAP gate on ground-state manifolds, where the amplitude modulation and soft quantum control of lasers driving ground-Rydberg state transitions are elaborately matched with the interaction strength between atoms so as to engineer the desired transformation of atomic states. Compared with the recent Rydberg-atom SWAP gate scheme, the present one possesses the undegraded first-order dynamics and shows an interference-induced suppression of the doubly-excited Rydberg state, so it costs shorter gate time and exhibits greater robustness against atomic decay and deviations in the interatomic separation (interaction strengths). The present mechanism of implementing a SWAP gate on interacting Rydberg atoms could facilitate high-fidelity demonstrations of atomic ground state transformation and further exploitation of peculiar dynamics.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00211-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00211-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Rydberg atoms have exhibited excellent potentials to become a competent platform of implementing quantum computation, which demands to execute various quantum gates fast and faithfully. We propose a dynamic mechanism of two interacting Rydberg atoms for implementing a high-fidelity SWAP gate on ground-state manifolds, where the amplitude modulation and soft quantum control of lasers driving ground-Rydberg state transitions are elaborately matched with the interaction strength between atoms so as to engineer the desired transformation of atomic states. Compared with the recent Rydberg-atom SWAP gate scheme, the present one possesses the undegraded first-order dynamics and shows an interference-induced suppression of the doubly-excited Rydberg state, so it costs shorter gate time and exhibits greater robustness against atomic decay and deviations in the interatomic separation (interaction strengths). The present mechanism of implementing a SWAP gate on interacting Rydberg atoms could facilitate high-fidelity demonstrations of atomic ground state transformation and further exploitation of peculiar dynamics.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.