Non-vanishing and cofiniteness of generalized local cohomology modules

IF 0.6 3区 数学 Q3 MATHEMATICS
Tran Tuan Nam, Nguyen Minh Tri
{"title":"Non-vanishing and cofiniteness of generalized local cohomology modules","authors":"Tran Tuan Nam, Nguyen Minh Tri","doi":"10.1007/s10998-023-00567-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show some results on the non-vanishing of the generalized local cohomology modules <span>\\(H^i_I(M,N)\\)</span>. In a Cohen–Macaulay local ring <span>\\((R,\\mathop {\\mathfrak {m}})\\)</span>, we prove, by using induction on <span>\\(\\dim N\\)</span>, that if <i>M</i>, <i>N</i> are two finitely generated <i>R</i>-modules with <span>\\({\\text {id}}\\,M&lt;\\infty \\)</span> and <span>\\({\\text {Gid}}\\,N&lt;\\infty \\)</span>, then <span>\\(H^{\\dim R-grade _R({\\text {Ann}}_RN,M)}_{\\mathop {\\mathfrak {m}}}(M,N)\\ne 0\\)</span>. We also study the <i>I</i>-cofiniteness of the generalized local cohomology module <span>\\(H^i_{\\mathop {\\mathfrak {m}}}(M,N)\\)</span>.\n</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00567-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we show some results on the non-vanishing of the generalized local cohomology modules \(H^i_I(M,N)\). In a Cohen–Macaulay local ring \((R,\mathop {\mathfrak {m}})\), we prove, by using induction on \(\dim N\), that if MN are two finitely generated R-modules with \({\text {id}}\,M<\infty \) and \({\text {Gid}}\,N<\infty \), then \(H^{\dim R-grade _R({\text {Ann}}_RN,M)}_{\mathop {\mathfrak {m}}}(M,N)\ne 0\). We also study the I-cofiniteness of the generalized local cohomology module \(H^i_{\mathop {\mathfrak {m}}}(M,N)\).

广义局部同调模块的非凡性和同完备性
在本文中,我们展示了关于广义局部同调模块 \(H^i_I(M,N)\)的非凡性的一些结果。在一个科恩-麦考莱局部环((R,\mathop {\mathfrak {m}})中,我们通过对\(\dim N\) 的归纳证明,如果 M, N 是两个有限生成的 R 模块,并且具有\({\text {id}}\,M<;\和({\text {Gid}}\,N<\infty \),那么(H^{\dim R-grade _R({\text {Ann}}_RN,M)}_{\mathop {\mathfrak {m}}(M,N)\ne 0\ )。我们还研究了广义局部同调模块 \(H^i_{\mathop {\mathfrak {m}}(M,N)\) 的 I-cofiniteness.)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信