Based Fault-Tolerance Consensus of Second-Order Heterogeneous System under Input Saturation with Dynamics and Static Leader

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jie Wu, Zijing Li, Xisheng Zhan
{"title":"Based Fault-Tolerance Consensus of Second-Order Heterogeneous System under Input Saturation with Dynamics and Static Leader","authors":"Jie Wu, Zijing Li, Xisheng Zhan","doi":"10.1155/2024/3356308","DOIUrl":null,"url":null,"abstract":"We focus on fault-tolerant consensus for heterogeneous dynamics systems with static and dynamic leaders under input saturation in this article. We apply theory of finite-time stability to multiagent system cooperative control. Also, we use integral sliding mode to overcome disturbance. The primary goal is a set of second-order linear and second-order nonlinear agents moving along the leader’s trajectory. We use topology graph to describe communication between multiple agents. By using integral sliding mode control way, corresponding controller is introduced to make system stable. Finally, correctness of experiment was confirmed by MATLAB numerical simulation.","PeriodicalId":55177,"journal":{"name":"Discrete Dynamics in Nature and Society","volume":"8 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Dynamics in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/3356308","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on fault-tolerant consensus for heterogeneous dynamics systems with static and dynamic leaders under input saturation in this article. We apply theory of finite-time stability to multiagent system cooperative control. Also, we use integral sliding mode to overcome disturbance. The primary goal is a set of second-order linear and second-order nonlinear agents moving along the leader’s trajectory. We use topology graph to describe communication between multiple agents. By using integral sliding mode control way, corresponding controller is introduced to make system stable. Finally, correctness of experiment was confirmed by MATLAB numerical simulation.
动态和静态领导输入饱和状态下基于容错的二阶异构系统共识
本文重点研究输入饱和状态下具有静态和动态领导者的异构动力学系统的容错共识。我们将有限时间稳定性理论应用于多代理系统协同控制。此外,我们还使用积分滑动模式来克服干扰。主要目标是一组沿着领导者轨迹移动的二阶线性和二阶非线性代理。我们使用拓扑图来描述多个代理之间的通信。通过使用积分滑模控制方式,引入相应的控制器使系统稳定。最后,实验的正确性得到了 MATLAB 数值模拟的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Dynamics in Nature and Society
Discrete Dynamics in Nature and Society 综合性期刊-数学跨学科应用
CiteScore
3.00
自引率
0.00%
发文量
598
审稿时长
3 months
期刊介绍: The main objective of Discrete Dynamics in Nature and Society is to foster links between basic and applied research relating to discrete dynamics of complex systems encountered in the natural and social sciences. The journal intends to stimulate publications directed to the analyses of computer generated solutions and chaotic in particular, correctness of numerical procedures, chaos synchronization and control, discrete optimization methods among other related topics. The journal provides a channel of communication between scientists and practitioners working in the field of complex systems analysis and will stimulate the development and use of discrete dynamical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信