求助PDF
{"title":"Two presentations of a weak type inequality for geometric maximal operators","authors":"Paul Hagelstein, Giorgi Oniani, Alex Stokolos","doi":"10.1515/gmj-2023-2113","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0076.png\" /> <jats:tex-math>{\\Phi:[0,\\infty)\\rightarrow[0,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Young’s function satisfying the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0070.png\" /> <jats:tex-math>{\\Delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-condition and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the geometric maximal operator associated to a homothecy invariant basis <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0098.png\" /> <jats:tex-math>{\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> acting on measurable functions on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:italic>Q</jats:italic> be the unit cube in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0058.png\" /> <jats:tex-math>{L^{\\Phi}(Q)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Orlicz space associated to Φ with the norm given by <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>f</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mo>:=</m:mo> <m:mrow> <m:mo movablelimits=\"false\">inf</m:mo> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">{</m:mo> <m:mrow> <m:mi>c</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:mi>Q</m:mi> </m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">(</m:mo> <m:mfrac> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>c</m:mi> </m:mfrac> <m:mo maxsize=\"210%\" minsize=\"210%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0019.png\" /> <jats:tex-math>\\|f\\|_{L^{\\Phi}(Q)}:=\\inf\\Biggl{\\{}c>0:\\int_{Q}\\Phi\\bigg{(}\\frac{|f|}{c}\\bigg{% )}\\leq 1\\Bigg{\\}}.</jats:tex-math> </jats:alternatives> </jats:disp-formula> We show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the weak type estimate <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> <m:mo></m:mo> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>></m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"210%\" minsize=\"210%\">(</m:mo> <m:mfrac> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>α</m:mi> </m:mfrac> <m:mo maxsize=\"210%\" minsize=\"210%\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0033.png\" /> <jats:tex-math>|\\{x\\in\\mathbb{R}^{n}:M_{\\mathcal{B}}\\kern 1.422638ptf(x)>\\alpha\\}|\\leq C_{1}% \\int_{\\mathbb{R}^{n}}\\Phi\\bigg{(}\\frac{|f|}{\\alpha}\\bigg{)}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all measurable functions <jats:italic>f</jats:italic> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0078.png\" /> <jats:tex-math>{\\alpha>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the weak type estimate <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>Q</m:mi> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> <m:mo></m:mo> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>></m:mo> <m:mi>α</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo></m:mo> <m:mfrac> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mi>f</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>Q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mi>α</m:mi> </m:mfrac> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0025.png\" /> <jats:tex-math>|\\{x\\in Q:M_{\\mathcal{B}}\\kern 1.422638ptf(x)>\\alpha\\}|\\leq C_{2}\\frac{\\|f\\|_{% L^{\\Phi}(Q)}}{\\alpha}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all measurable functions <jats:italic>f</jats:italic> supported on <jats:italic>Q</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0078.png\" /> <jats:tex-math>{\\alpha>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a consequence of this equivalence, we prove that if Φ satisfies the above conditions and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0098.png\" /> <jats:tex-math>{\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a homothecy invariant basis differentiating integrals of all measurable functions <jats:italic>f</jats:italic> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0090.png\" /> <jats:tex-math>{\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo><</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0087.png\" /> <jats:tex-math>{\\int_{\\mathbb{R}^{n}}\\Phi(|f|)<\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the associated maximal operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2113_eq_0063.png\" /> <jats:tex-math>{M_{\\mathcal{B}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies both of the above weak type estimates.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
几何最大算子弱型不等式的两种呈现形式
设 Φ : [ 0 , ∞ ) → [ 0 , ∞ ) {\Phi:[0,\infty)\rightarrow[0,\infty)}是满足Δ 2 {Delta_{2}} 的杨氏函数。 -条件,并让 M ℬ {M_{\mathcal{B}} 是与作用于ℝ n {\mathbb{R}^{n} 上可测函数的同神不变基 ℬ {mathcal{B}} 相关联的几何最大算子。} .设 Q 是 ℝ n {\mathbb{R}^{n}} 中的单位立方体,设 L Φ ( Q ) {L^{\Phi}(Q)} 是与Φ 相关的奥利兹空间,其规范为 ∥ f ∥ L Φ ( Q ) := inf { c > 0 : ∫ Q Φ ( | f | c ) ≤ 1 } . . \|f\|_{L^{\Phi}(Q)}:=\inf\Biggl{\{}c>0:\int_{Q}\Phi\bigg{(}\frac{|f|}{c}\bigg{% )}\leq 1\Bigg{\}}. 我们证明 M ℬ {M_{mathcal{B}}} 满足弱类型估计 | { x ∈ ℝ n : M ℬ f ( x ) > α }。 | ≤ C 1 ∫ ℝ n Φ ( | f | α ) |\{x\inmathbb{R}^{n}:M_{{mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{1}% \int_{mathbb{R}^{n}}\Phi\bigg{(}\frac{|f|}{alpha}\bigg{)} for all measurable functions f on ℝ n {\mathbb{R}^{n}} and α >;0 {\alpha>0} 当且仅当 M ℬ {M_{mathcal{B}}} 满足弱类型估计 | { x∈ Q : M ℬ f ( x ) > α } ≤ C 2 ∥ f ∥ L Φ ( Q ) α |\{x\in Q:M_{mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{2}\frac{|f\|{% L^{Phi}(Q)}}{alpha} for all measurable functions f supported on Q and α > 0 {\alpha>0} .由于这一等价性,我们证明,如果 Φ 满足上述条件,且 ℬ {\mathcal{B}} 是一个同神不变基,微分 ℝ n {mathbb{R}^{n} 上所有可测函数 f 的积分,使得 ∫ ℝ n Φ ( | f | ) <;∞ {\int_{\mathbb{R}^{n}}\Phi(|f|)<\infty} 那么相关的最大算子 M ℬ {M_{\mathcal{B}}} 满足上述两个弱类型估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。