{"title":"A note on maximal estimate for an oscillatory operator","authors":"Jiawei Shen, Yali Pan","doi":"10.1515/gmj-2023-2115","DOIUrl":null,"url":null,"abstract":"We study the local maximal oscillatory integral operator <jats:disp-formula-group> <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:munder> <m:mo movablelimits=\"false\">sup</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>t</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">|</m:mo> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> </m:mstyle> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mfrac> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo></m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>α</m:mi> </m:msup> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo></m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>β</m:mi> </m:msup> </m:mfrac> </m:mstyle> <m:mo></m:mo> <m:mi mathvariant=\"normal\">Ψ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo></m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mover accent=\"true\"> <m:mi>f</m:mi> <m:mo>^</m:mo> </m:mover> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mpadded width=\"+1.7pt\"> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mn>2</m:mn> <m:mo></m:mo> <m:mi>π</m:mi> <m:mo></m:mo> <m:mi>i</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> </m:mrow> </m:msup> </m:mpadded> <m:mo></m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>ξ</m:mi> </m:mrow> </m:mrow> </m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">|</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0041.png\" /> <jats:tex-math>\\displaystyle T_{\\alpha,\\beta}^{\\ast}(f)(x)=\\sup_{0<t<1}\\Bigg{|}\\int_{\\mathbb{% R}^{n}}\\frac{e^{i|t\\xi|^{\\alpha}}}{|t\\xi|^{\\beta}}\\Psi(|t\\xi|)\\widehat{f}(\\xi)% e^{2\\pi i\\langle x,\\xi\\rangle}\\,d\\xi\\Bigg{|},</jats:tex-math> </jats:alternatives> </jats:disp-formula> </jats:disp-formula-group> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0269.png\" /> <jats:tex-math>{\\alpha\\in(0,1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>β</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0278.png\" /> <jats:tex-math>{\\beta>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and Ψ is a cutoff function that vanishes in a neighborhood of the origin. First, in the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0164.png\" /> <jats:tex-math>{0<p<1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we obtain the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msup> <m:mi>H</m:mi> <m:mi>p</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0399.png\" /> <jats:tex-math>{{{H^{p}}({{\\mathbb{R}^{n}}})}\\rightarrow{{L^{p}({{\\mathbb{R}^{n}}})}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0251.png\" /> <jats:tex-math>{T_{\\alpha,\\beta}^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with the sharp relation among <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0265.png\" /> <jats:tex-math>{\\alpha,\\beta}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>p</jats:italic>. Then, using interpolation, we obtain the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0404.png\" /> <jats:tex-math>{{{L^{p}({{\\mathbb{R}^{n}}})}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0251.png\" /> <jats:tex-math>{T_{\\alpha,\\beta}^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>></m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0372.png\" /> <jats:tex-math>{p>1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is an improvement of the recent result by Kenig and Staubach. At the critical case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0368.png\" /> <jats:tex-math>{p=1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>β</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo></m:mo> <m:mi>α</m:mi> </m:mrow> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0274.png\" /> <jats:tex-math>{\\beta=\\frac{n\\alpha}{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>B</m:mi> <m:mi>q</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0250.png\" /> <jats:tex-math>{T_{\\alpha,\\beta}^{\\ast}:B_{q}({\\mathbb{R}^{n}})\\rightarrow L^{1,\\infty}({% \\mathbb{R}^{n}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>B</m:mi> <m:mi>q</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0192.png\" /> <jats:tex-math>{B_{q}({\\mathbb{R}^{n}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the block space introduced by Lu, Taibleson and Weiss in order to study the almost every convergence of the Bochner–Riesz means at the critical index. As a further application, we obtain the convergence speed of a combination to the fractional Schrödinger operators <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> <m:mo></m:mo> <m:mi>k</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi mathvariant=\"normal\">△</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>α</m:mi> </m:msup> </m:mrow> </m:msup> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0333.png\" /> <jats:tex-math>{\\{e^{itk|\\triangle|^{\\alpha}}\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"86 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2115","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the local maximal oscillatory integral operator Tα,β∗(f)(x)=sup0<t<1|∫ℝnei|tξ|α|tξ|βΨ(|tξ|)f^(ξ)e2πi〈x,ξ〉𝑑ξ|,\displaystyle T_{\alpha,\beta}^{\ast}(f)(x)=\sup_{0<t<1}\Bigg{|}\int_{\mathbb{% R}^{n}}\frac{e^{i|t\xi|^{\alpha}}}{|t\xi|^{\beta}}\Psi(|t\xi|)\widehat{f}(\xi)% e^{2\pi i\langle x,\xi\rangle}\,d\xi\Bigg{|}, where α∈(0,1){\alpha\in(0,1)}, β>0{\beta>0}, and Ψ is a cutoff function that vanishes in a neighborhood of the origin. First, in the case 0<p<1{0<p<1}, we obtain the Hp(ℝn)→Lp(ℝn){{{H^{p}}({{\mathbb{R}^{n}}})}\rightarrow{{L^{p}({{\mathbb{R}^{n}}})}}} boundedness of Tα,β∗{T_{\alpha,\beta}^{\ast}} with the sharp relation among α,β{\alpha,\beta} and p. Then, using interpolation, we obtain the Lp(ℝn){{{L^{p}({{\mathbb{R}^{n}}})}}} boundedness on Tα,β∗{T_{\alpha,\beta}^{\ast}} when p>1{p>1}, which is an improvement of the recent result by Kenig and Staubach. At the critical case p=1{p=1} and β=nα2{\beta=\frac{n\alpha}{2}}, we show Tα,β∗:Bq(ℝn)→L1,∞(ℝn){T_{\alpha,\beta}^{\ast}:B_{q}({\mathbb{R}^{n}})\rightarrow L^{1,\infty}({% \mathbb{R}^{n}})}, where Bq(ℝn){B_{q}({\mathbb{R}^{n}})} is the block space introduced by Lu, Taibleson and Weiss in order to study the almost every convergence of the Bochner–Riesz means at the critical index. As a further application, we obtain the convergence speed of a combination to the fractional Schrödinger operators {eitk|△|α}{\{e^{itk|\triangle|^{\alpha}}\}}.
我们研究局部最大振荡积分算子 T α , β ∗ ( f ) ( x ) = sup 0 < t <;1 | ∫ ℝ n e i | t ξ | α | t ξ | β Ψ ( | t ξ | ) f ^ ( ξ ) e 2 π i 〈 x 、ξ 〉𝑑 ξ | , \displaystyle T_{\alpha,\beta}^{\ast}(f)(x)=\sup_{0<;t<;1}\Bigg{|}\int_{\mathbb{% R}^{n}}\frac{e^{i|t\xi|^{\alpha}}}{|t\xi|^{\beta}}\Psi(|t\xi|)\widehat{f}(\xi)% e^{2\pi i\langle x,\其中 α ∈ ( 0 , 1 ) {\alpha\in(0,1)}, β >;0 {\beta>0} Ψ 是在原点附近消失的截止函数。首先,在 0 < p < 1 {0<p<1} 的情况下,我们可以得到 H p ( Ψ) 。 我们得到 H p ( ℝ n ) → L p ( ℝ n ) {{{H^{p}}({{\mathbb{R}^{n}})}\rightarrow{{L^{p}({{\mathbb{R}^{n}})}} T α 的有界性、β∗ {T_{alpha,\beta}^{\ast}} 与 α , β {alpha,\beta} 和 p 之间的尖锐关系。然后,利用插值法,当 p > 1 {p>1} 时,我们得到 L p ( ℝ n ) {{{L^{p}({{\mathbb{R}^{n}})}}} 对 T α , β∗ {T_{alpha,\beta}^{\ast}} 的约束性。} 这是对凯尼格和斯陶巴赫最新结果的改进。在临界情况 p = 1 {p=1} 和 β = n α 2 {\beta=\frac{n\alpha}{2}} 下,我们证明了 T α , β = n α 2 {\beta=\frac{n\alpha}{2}} 和 β = n α 3 {\beta=\frac{n\alpha}{2}} 我们证明 T α , β ∗ : B q ( ℝ n ) → L 1 , ∞ ( ℝ n ) {T_{alpha,\beta}^{\ast}:B_{q}({\mathbb{R}^{n}})\rightarrow L^{1,\infty}({% \mathbb{R}^{n}}} 其中 B q ( ℝ n ) {B_{q}({\mathbb{R}^{n}})} 是 Lu、Taibleson 和 Weiss 为研究 Bochner-Riesz 均值在临界指数处的几乎每次收敛而引入的块空间。作为进一步的应用,我们得到了分数薛定谔算子 { e i t k | △ | α } 组合的收敛速度。 {\{e^{itk|\triangle|^{\alpha}}\}} .
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.