On the comparison of translation invariant convex differentiation bases

Pub Date : 2024-01-01 DOI:10.1515/gmj-2023-2070
Irakli Japaridze
{"title":"On the comparison of translation invariant convex differentiation bases","authors":"Irakli Japaridze","doi":"10.1515/gmj-2023-2070","DOIUrl":null,"url":null,"abstract":"It is known that if <jats:italic>B</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>B</m:mi> <m:mo>′</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2070_eq_0070.png\" /> <jats:tex-math>{B^{\\prime}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are translation invariant convex density differentiation bases and the maximal operators associated to them locally majorize each other, then <jats:italic>B</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>B</m:mi> <m:mo>′</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2070_eq_0070.png\" /> <jats:tex-math>{B^{\\prime}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> differentiate the integrals of the same class of non-negative functions. We show that under the same conditions it is not possible to assert more about similarity of the differential properties of <jats:italic>B</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>B</m:mi> <m:mo>′</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2070_eq_0070.png\" /> <jats:tex-math>{B^{\\prime}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in view of their positive equivalence.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that if B and B {B^{\prime}} are translation invariant convex density differentiation bases and the maximal operators associated to them locally majorize each other, then B and B {B^{\prime}} differentiate the integrals of the same class of non-negative functions. We show that under the same conditions it is not possible to assert more about similarity of the differential properties of B and B {B^{\prime}} in view of their positive equivalence.
分享
查看原文
关于平移不变凸微分基的比较
众所周知,如果 B 和 B ′ {B^{/prime}} 是平移不变的凸密度微分基,并且与它们相关的最大算子在局部上相互大化,那么 B 和 B ′ {B^{/prime} 就微分同一类非负函数的积分。我们证明,在同样的条件下,鉴于 B 和 B ′ {B^{prime} 的正等价性,不可能断言它们的微分性质有更多的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信