Floquet theory and stability for a class of first order differential equations with delays

Pub Date : 2024-01-01 DOI:10.1515/gmj-2023-2119
Alexander Domoshnitsky, Elnatan Berenson, Shai Levi, Elena Litsyn
{"title":"Floquet theory and stability for a class of first order differential equations with delays","authors":"Alexander Domoshnitsky, Elnatan Berenson, Shai Levi, Elena Litsyn","doi":"10.1515/gmj-2023-2119","DOIUrl":null,"url":null,"abstract":"A version of the Floquet theory for first order delay differential equations is proposed. Formula of solutions representation is obtained. On this basis, the stability of first order delay differential equations is studied. An analogue of the classical integral Lyapunov–Zhukovskii test of stability is proved. New, in comparison with all known, tests of the exponential stability are obtained on the basis of the Floquet theory. A possibility to achieve the exponential stability is connected with oscillation of solutions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A version of the Floquet theory for first order delay differential equations is proposed. Formula of solutions representation is obtained. On this basis, the stability of first order delay differential equations is studied. An analogue of the classical integral Lyapunov–Zhukovskii test of stability is proved. New, in comparison with all known, tests of the exponential stability are obtained on the basis of the Floquet theory. A possibility to achieve the exponential stability is connected with oscillation of solutions.
分享
查看原文
有延迟的一类一阶微分方程的 Floquet 理论和稳定性
提出了一阶延迟微分方程的 Floquet 理论版本。获得了解的表示公式。在此基础上,研究了一阶延迟微分方程的稳定性。证明了经典积分 Lyapunov-Zhukovskii 稳定性检验的类似方法。与所有已知的指数稳定性检验相比,在 Floquet 理论的基础上获得了新的检验方法。实现指数稳定性的可能性与解的振荡有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信