Representations of a number in an arbitrary base with unbounded digits

Pub Date : 2024-01-01 DOI:10.1515/gmj-2023-2118
Artūras Dubickas
{"title":"Representations of a number in an arbitrary base with unbounded digits","authors":"ArtÅ«ras Dubickas","doi":"10.1515/gmj-2023-2118","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>β</m:mi> <m:mo>∈</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0137.png\" /> <jats:tex-math>{\\beta\\in{\\mathbb{C}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, every <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0122.png\" /> <jats:tex-math>{\\alpha\\in{\\mathbb{C}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> has at most finitely many (possibly none at all) representations of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mi>β</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mi>β</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>+</m:mo> <m:msub> <m:mi>d</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0119.png\" /> <jats:tex-math>{\\alpha=d_{n}\\beta^{n}+d_{n-1}\\beta^{n-1}+\\dots+d_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with nonnegative integers <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0231.png\" /> <jats:tex-math>{n,d_{n},d_{n-1},\\dots,d_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if β is a transcendental number or an algebraic number which has a conjugate over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℚ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0255.png\" /> <jats:tex-math>{{\\mathbb{Q}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (possibly β itself) in the real interval <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0051.png\" /> <jats:tex-math>{(1,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The nontrivial part here is to show that for every algebraic number β lying with its all conjugates in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ℂ</m:mi> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0250.png\" /> <jats:tex-math>{{\\mathbb{C}}\\setminus(1,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, there is <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>ℚ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>β</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0125.png\" /> <jats:tex-math>{\\alpha\\in{\\mathbb{Q}}(\\beta)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with infinitely many such representations. In a particular case, when β is a quadratic algebraic number, this was recently established by Kala and Zindulka.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that, for β {\beta\in{\mathbb{C}}} , every α {\alpha\in{\mathbb{C}}} has at most finitely many (possibly none at all) representations of the form α = d n β n + d n - 1 β n - 1 + + d 0 {\alpha=d_{n}\beta^{n}+d_{n-1}\beta^{n-1}+\dots+d_{0}} with nonnegative integers n , d n , d n - 1 , , d 0 {n,d_{n},d_{n-1},\dots,d_{0}} if and only if β is a transcendental number or an algebraic number which has a conjugate over {{\mathbb{Q}}} (possibly β itself) in the real interval ( 1 , ) {(1,\infty)} . The nontrivial part here is to show that for every algebraic number β lying with its all conjugates in ( 1 , ) {{\mathbb{C}}\setminus(1,\infty)} , there is α ( β ) {\alpha\in{\mathbb{Q}}(\beta)} with infinitely many such representations. In a particular case, when β is a quadratic algebraic number, this was recently established by Kala and Zindulka.
分享
查看原文
以任意基数表示数位无限制的数
在本文中,我们证明了对于 β∈ ℂ {\beta\in\{mathbb{C}}} ,每个 α∈ ℂ {\alpha\in\{mathbb{C}} 都有最有限多个(可能没有一个)"α"。 每个 α∈ ℂ {\alpha\in\{mathbb{C}}} 最多有有限多个(可能根本没有)形式为 α = d n β n + d n - 1 β n - 1 + ... 的表示。+ d 0 {\alpha=d_{n}\beta^{n}+d_{n-1}\beta^{n-1}+\dots+d_{0}} 为非负整数 n , d n , d n - 1 , ..., d 0 {n,d_{n},d_{n-1},(dots,d_{0}}当且仅当β 是一个超越数或代数数,它在ℚ {{mathbb{Q}}}(可能是 β 本身)的实区间 ( 1 , ∞ ) {(1,\infty)} 上有一个共轭。这里非难的部分是要证明,对于每个代数数 β 和它在 ℂ ∖ ( 1 , ∞ ) {{mathbb{C}}\setminus(1,\infty)} 中的所有共轭数,都有α∈ ℚ ( β ) {\alpha\in{mathbb{Q}}(\beta)} 无穷多个这样的表示。在一种特殊情况下,当 β 是二次代数数时,卡拉和津杜尔卡最近证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信