Representations of a number in an arbitrary base with unbounded digits

IF 0.8 4区 数学 Q2 MATHEMATICS
Artūras Dubickas
{"title":"Representations of a number in an arbitrary base with unbounded digits","authors":"ArtÅ«ras Dubickas","doi":"10.1515/gmj-2023-2118","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>β</m:mi> <m:mo>∈</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0137.png\" /> <jats:tex-math>{\\beta\\in{\\mathbb{C}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, every <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0122.png\" /> <jats:tex-math>{\\alpha\\in{\\mathbb{C}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> has at most finitely many (possibly none at all) representations of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mi>β</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mi>β</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>+</m:mo> <m:msub> <m:mi>d</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0119.png\" /> <jats:tex-math>{\\alpha=d_{n}\\beta^{n}+d_{n-1}\\beta^{n-1}+\\dots+d_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with nonnegative integers <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0231.png\" /> <jats:tex-math>{n,d_{n},d_{n-1},\\dots,d_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if β is a transcendental number or an algebraic number which has a conjugate over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℚ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0255.png\" /> <jats:tex-math>{{\\mathbb{Q}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (possibly β itself) in the real interval <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0051.png\" /> <jats:tex-math>{(1,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The nontrivial part here is to show that for every algebraic number β lying with its all conjugates in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ℂ</m:mi> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0250.png\" /> <jats:tex-math>{{\\mathbb{C}}\\setminus(1,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, there is <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>ℚ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>β</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0125.png\" /> <jats:tex-math>{\\alpha\\in{\\mathbb{Q}}(\\beta)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with infinitely many such representations. In a particular case, when β is a quadratic algebraic number, this was recently established by Kala and Zindulka.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2118","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that, for β {\beta\in{\mathbb{C}}} , every α {\alpha\in{\mathbb{C}}} has at most finitely many (possibly none at all) representations of the form α = d n β n + d n - 1 β n - 1 + + d 0 {\alpha=d_{n}\beta^{n}+d_{n-1}\beta^{n-1}+\dots+d_{0}} with nonnegative integers n , d n , d n - 1 , , d 0 {n,d_{n},d_{n-1},\dots,d_{0}} if and only if β is a transcendental number or an algebraic number which has a conjugate over {{\mathbb{Q}}} (possibly β itself) in the real interval ( 1 , ) {(1,\infty)} . The nontrivial part here is to show that for every algebraic number β lying with its all conjugates in ( 1 , ) {{\mathbb{C}}\setminus(1,\infty)} , there is α ( β ) {\alpha\in{\mathbb{Q}}(\beta)} with infinitely many such representations. In a particular case, when β is a quadratic algebraic number, this was recently established by Kala and Zindulka.
以任意基数表示数位无限制的数
在本文中,我们证明了对于 β∈ ℂ {\beta\in\{mathbb{C}}} ,每个 α∈ ℂ {\alpha\in\{mathbb{C}} 都有最有限多个(可能没有一个)"α"。 每个 α∈ ℂ {\alpha\in\{mathbb{C}}} 最多有有限多个(可能根本没有)形式为 α = d n β n + d n - 1 β n - 1 + ... 的表示。+ d 0 {\alpha=d_{n}\beta^{n}+d_{n-1}\beta^{n-1}+\dots+d_{0}} 为非负整数 n , d n , d n - 1 , ..., d 0 {n,d_{n},d_{n-1},(dots,d_{0}}当且仅当β 是一个超越数或代数数,它在ℚ {{mathbb{Q}}}(可能是 β 本身)的实区间 ( 1 , ∞ ) {(1,\infty)} 上有一个共轭。这里非难的部分是要证明,对于每个代数数 β 和它在 ℂ ∖ ( 1 , ∞ ) {{mathbb{C}}\setminus(1,\infty)} 中的所有共轭数,都有α∈ ℚ ( β ) {\alpha\in{mathbb{Q}}(\beta)} 无穷多个这样的表示。在一种特殊情况下,当 β 是二次代数数时,卡拉和津杜尔卡最近证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信