{"title":"Representations of a number in an arbitrary base with unbounded digits","authors":"ArtÅ«ras Dubickas","doi":"10.1515/gmj-2023-2118","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>β</m:mi> <m:mo>∈</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0137.png\" /> <jats:tex-math>{\\beta\\in{\\mathbb{C}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, every <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0122.png\" /> <jats:tex-math>{\\alpha\\in{\\mathbb{C}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> has at most finitely many (possibly none at all) representations of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo></m:mo> <m:msup> <m:mi>β</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo></m:mo> <m:msup> <m:mi>β</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>+</m:mo> <m:msub> <m:mi>d</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0119.png\" /> <jats:tex-math>{\\alpha=d_{n}\\beta^{n}+d_{n-1}\\beta^{n-1}+\\dots+d_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with nonnegative integers <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0231.png\" /> <jats:tex-math>{n,d_{n},d_{n-1},\\dots,d_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if β is a transcendental number or an algebraic number which has a conjugate over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℚ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0255.png\" /> <jats:tex-math>{{\\mathbb{Q}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (possibly β itself) in the real interval <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0051.png\" /> <jats:tex-math>{(1,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The nontrivial part here is to show that for every algebraic number β lying with its all conjugates in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ℂ</m:mi> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0250.png\" /> <jats:tex-math>{{\\mathbb{C}}\\setminus(1,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, there is <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>ℚ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>β</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0125.png\" /> <jats:tex-math>{\\alpha\\in{\\mathbb{Q}}(\\beta)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with infinitely many such representations. In a particular case, when β is a quadratic algebraic number, this was recently established by Kala and Zindulka.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2118","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove that, for β∈ℂ{\beta\in{\mathbb{C}}}, every α∈ℂ{\alpha\in{\mathbb{C}}} has at most finitely many (possibly none at all) representations of the form α=dnβn+dn-1βn-1+…+d0{\alpha=d_{n}\beta^{n}+d_{n-1}\beta^{n-1}+\dots+d_{0}} with nonnegative integers n,dn,dn-1,…,d0{n,d_{n},d_{n-1},\dots,d_{0}} if and only if β is a transcendental number or an algebraic number which has a conjugate over ℚ{{\mathbb{Q}}} (possibly β itself) in the real interval (1,∞){(1,\infty)}. The nontrivial part here is to show that for every algebraic number β lying with its all conjugates in ℂ∖(1,∞){{\mathbb{C}}\setminus(1,\infty)}, there is α∈ℚ(β){\alpha\in{\mathbb{Q}}(\beta)} with infinitely many such representations. In a particular case, when β is a quadratic algebraic number, this was recently established by Kala and Zindulka.
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.