MACHINE LEARNING ENABLES QUANTIFYING CELL-JANUS PARTICLE CONJUGATES THROUGH MICROFLOWING IMPEDANCE SIGNALS.

Brandon K Ashley, Jianye Sui, Mehdi Javanmard, Umer Hassan
{"title":"MACHINE LEARNING ENABLES QUANTIFYING CELL-JANUS PARTICLE CONJUGATES THROUGH MICROFLOWING IMPEDANCE SIGNALS.","authors":"Brandon K Ashley, Jianye Sui, Mehdi Javanmard, Umer Hassan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we demonstrate the differentiation of demodulated multifrequency signals from impedance sensitive microparticles when targeting surface receptors on neutrophils in a microfluidic impedance cytometer. These scheme uses a single signal input and detection configuration, and machine learning can differentiate particle types with up to 82% accuracy.</p>","PeriodicalId":88936,"journal":{"name":"Micro total analysis systems : proceedings of the ... [Mu] TAS International Conference on Miniaturized Chemical and Biochemical Analysis Systems. [Mu] TAS (Conference)","volume":"26 ","pages":"669-670"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro total analysis systems : proceedings of the ... [Mu] TAS International Conference on Miniaturized Chemical and Biochemical Analysis Systems. [Mu] TAS (Conference)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we demonstrate the differentiation of demodulated multifrequency signals from impedance sensitive microparticles when targeting surface receptors on neutrophils in a microfluidic impedance cytometer. These scheme uses a single signal input and detection configuration, and machine learning can differentiate particle types with up to 82% accuracy.

机器学习可通过微流体阻抗信号量化细胞-亚麻粒子结合体。
在这项工作中,我们展示了在微流体阻抗细胞仪中以中性粒细胞表面受体为目标,对来自阻抗敏感微颗粒的解调多频信号进行区分的方法。这些方案使用单一信号输入和检测配置,机器学习可区分颗粒类型,准确率高达 82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信