Session Introduction: Artificial Intelligence in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface.

Q2 Computer Science
Sajjad Fouladvand, Emma Pierson, Ivana Jankovic, David Ouyang, Jonathan H Chen, Roxana Daneshjou
{"title":"Session Introduction: Artificial Intelligence in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface.","authors":"Sajjad Fouladvand, Emma Pierson, Ivana Jankovic, David Ouyang, Jonathan H Chen, Roxana Daneshjou","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) models are substantially enhancing the capability to analyze complex and multi-dimensional datasets. Generative AI and deep learning models have demonstrated significant advancements in extracting knowledge from unstructured text, imaging as well as structured and tabular data. This recent breakthrough in AI has inspired research in medicine, leading to the development of numerous tools for creating clinical decision support systems, monitoring tools, image interpretation, and triaging capabilities. Nevertheless, comprehensive research is imperative to evaluate the potential impact and implications of AI systems in healthcare. At the 2024 Pacific Symposium on Biocomputing (PSB) session entitled \"Artificial Intelligence in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface\", we spotlight research that develops and applies AI algorithms to solve real-world problems in healthcare.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) models are substantially enhancing the capability to analyze complex and multi-dimensional datasets. Generative AI and deep learning models have demonstrated significant advancements in extracting knowledge from unstructured text, imaging as well as structured and tabular data. This recent breakthrough in AI has inspired research in medicine, leading to the development of numerous tools for creating clinical decision support systems, monitoring tools, image interpretation, and triaging capabilities. Nevertheless, comprehensive research is imperative to evaluate the potential impact and implications of AI systems in healthcare. At the 2024 Pacific Symposium on Biocomputing (PSB) session entitled "Artificial Intelligence in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface", we spotlight research that develops and applies AI algorithms to solve real-world problems in healthcare.

会议简介:临床医学中的人工智能:人机界面上的生成和交互系统。
人工智能(AI)模型大大提高了分析复杂和多维数据集的能力。生成式人工智能和深度学习模型在从非结构化文本、图像以及结构化和表格数据中提取知识方面取得了显著进步。人工智能领域的这一最新突破激发了医学研究的灵感,开发出了许多用于创建临床决策支持系统、监测工具、图像解读和分流功能的工具。然而,要评估人工智能系统在医疗保健领域的潜在影响和意义,全面的研究势在必行。在 2024 年太平洋生物计算研讨会(PSB)题为 "人工智能在临床医学中的应用 "的会议上,与会代表就人工智能在医疗保健领域的应用进行了深入探讨:人机界面上的生成和交互系统 "分会上,我们将重点介绍开发和应用人工智能算法解决医疗保健领域实际问题的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信