Modeling Path Importance for Effective Alzheimer's Disease Drug Repurposing.

Q2 Computer Science
Shunian Xiang, Patrick J Lawrence, Bo Peng, ChienWei Chiang, Dokyoon Kim, Li Shen, Xia Ning
{"title":"Modeling Path Importance for Effective Alzheimer's Disease Drug Repurposing.","authors":"Shunian Xiang, Patrick J Lawrence, Bo Peng, ChienWei Chiang, Dokyoon Kim, Li Shen, Xia Ning","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, drug repurposing has emerged as an effective and resource-efficient paradigm for AD drug discovery. Among various methods for drug repurposing, network-based methods have shown promising results as they are capable of leveraging complex networks that integrate multiple interaction types, such as protein-protein interactions, to more effectively identify candidate drugs. However, existing approaches typically assume paths of the same length in the network have equal importance in identifying the therapeutic effect of drugs. Other domains have found that same length paths do not necessarily have the same importance. Thus, relying on this assumption may be deleterious to drug repurposing attempts. In this work, we propose MPI (Modeling Path Importance), a novel network-based method for AD drug repurposing. MPI is unique in that it prioritizes important paths via learned node embeddings, which can effectively capture a network's rich structural information. Thus, leveraging learned embeddings allows MPI to effectively differentiate the importance among paths. We evaluate MPI against a commonly used baseline method that identifies anti-AD drug candidates primarily based on the shortest paths between drugs and AD in the network. We observe that among the top-50 ranked drugs, MPI prioritizes 20.0% more drugs with anti-AD evidence compared to the baseline. Finally, Cox proportional-hazard models produced from insurance claims data aid us in identifying the use of etodolac, nicotine, and BBB-crossing ACE-INHs as having a reduced risk of AD, suggesting such drugs may be viable candidates for repurposing and should be explored further in future studies.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"306-321"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, drug repurposing has emerged as an effective and resource-efficient paradigm for AD drug discovery. Among various methods for drug repurposing, network-based methods have shown promising results as they are capable of leveraging complex networks that integrate multiple interaction types, such as protein-protein interactions, to more effectively identify candidate drugs. However, existing approaches typically assume paths of the same length in the network have equal importance in identifying the therapeutic effect of drugs. Other domains have found that same length paths do not necessarily have the same importance. Thus, relying on this assumption may be deleterious to drug repurposing attempts. In this work, we propose MPI (Modeling Path Importance), a novel network-based method for AD drug repurposing. MPI is unique in that it prioritizes important paths via learned node embeddings, which can effectively capture a network's rich structural information. Thus, leveraging learned embeddings allows MPI to effectively differentiate the importance among paths. We evaluate MPI against a commonly used baseline method that identifies anti-AD drug candidates primarily based on the shortest paths between drugs and AD in the network. We observe that among the top-50 ranked drugs, MPI prioritizes 20.0% more drugs with anti-AD evidence compared to the baseline. Finally, Cox proportional-hazard models produced from insurance claims data aid us in identifying the use of etodolac, nicotine, and BBB-crossing ACE-INHs as having a reduced risk of AD, suggesting such drugs may be viable candidates for repurposing and should be explored further in future studies.

为有效的阿尔茨海默病药物再利用建立路径重要性模型
近来,药物再利用已成为一种有效且节省资源的AD药物发现范例。在各种药物再利用方法中,基于网络的方法显示出良好的效果,因为它们能够利用整合了多种相互作用类型(如蛋白质-蛋白质相互作用)的复杂网络,更有效地确定候选药物。然而,现有方法通常假定网络中相同长度的路径在确定药物治疗效果方面具有同等重要性。其他领域的研究发现,相同长度的路径并不一定具有相同的重要性。因此,依赖这一假设可能会不利于药物再利用的尝试。在这项工作中,我们提出了 MPI(路径重要性建模),这是一种基于网络的新型 AD 药物再利用方法。MPI 的独特之处在于,它通过学习的节点嵌入对重要路径进行优先排序,从而有效捕捉网络的丰富结构信息。因此,利用学习到的嵌入信息,MPI 可以有效区分不同路径的重要性。我们将 MPI 与一种常用的基线方法进行了对比评估,后者主要根据网络中药物与 AD 之间的最短路径来识别抗 AD 候选药物。我们发现,与基线方法相比,在排名前 50 位的药物中,MPI 优先选择的具有抗 AD 证据的药物多出 20.0%。最后,根据保险理赔数据建立的 Cox 比例危险模型帮助我们确定了使用依托度酸、尼古丁和跨越 BBB 的 ACE-INHs 可降低 AD 风险,这表明此类药物可能是再利用的可行候选药物,应在未来的研究中进一步探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信