intCC: An efficient weighted integrative consensus clustering of multimodal data.

Q2 Computer Science
Can Huang, Pei Fen Kuan
{"title":"intCC: An efficient weighted integrative consensus clustering of multimodal data.","authors":"Can Huang, Pei Fen Kuan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>High throughput profiling of multiomics data provides a valuable resource to better understand the complex human disease such as cancer and to potentially uncover new subtypes. Integrative clustering has emerged as a powerful unsupervised learning framework for subtype discovery. In this paper, we propose an efficient weighted integrative clustering called intCC by combining ensemble method, consensus clustering and kernel learning integrative clustering. We illustrate that intCC can accurately uncover the latent cluster structures via extensive simulation studies and a case study on the TCGA pan cancer datasets. An R package intCC implementing our proposed method is available at https://github.com/candsj/intCC.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"627-640"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764072/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

High throughput profiling of multiomics data provides a valuable resource to better understand the complex human disease such as cancer and to potentially uncover new subtypes. Integrative clustering has emerged as a powerful unsupervised learning framework for subtype discovery. In this paper, we propose an efficient weighted integrative clustering called intCC by combining ensemble method, consensus clustering and kernel learning integrative clustering. We illustrate that intCC can accurately uncover the latent cluster structures via extensive simulation studies and a case study on the TCGA pan cancer datasets. An R package intCC implementing our proposed method is available at https://github.com/candsj/intCC.

intCC:多模态数据的高效加权综合共识聚类。
多组学数据的高通量剖析为更好地了解癌症等复杂的人类疾病提供了宝贵的资源,并有可能发现新的亚型。整合聚类已成为发现亚型的一个强大的无监督学习框架。在本文中,我们结合了集合方法、共识聚类和核学习整合聚类,提出了一种高效的加权整合聚类,称为 intCC。我们通过大量的模拟研究和对 TCGA 泛癌症数据集的案例研究,说明 intCC 可以准确地发现潜在的聚类结构。实现我们提出的方法的 R 软件包 intCC 可在 https://github.com/candsj/intCC 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信