Imputation of race and ethnicity categories using genetic ancestry from real-world genomic testing data.

Q2 Computer Science
Brooke Rhead, Paige E Haffener, Yannick Pouliot, Francisco M De La Vega
{"title":"Imputation of race and ethnicity categories using genetic ancestry from real-world genomic testing data.","authors":"Brooke Rhead, Paige E Haffener, Yannick Pouliot, Francisco M De La Vega","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The incompleteness of race and ethnicity information in real-world data (RWD) hampers its utility in promoting healthcare equity. This study introduces two methods-one heuristic and the other machine learning-based-to impute race and ethnicity from genetic ancestry using tumor profiling data. Analyzing de-identified data from over 100,000 cancer patients sequenced with the Tempus xT panel, we demonstrate that both methods outperform existing geolocation and surname-based methods, with the machine learning approach achieving high recall (range: 0.859-0.993) and precision (range: 0.932-0.981) across four mutually exclusive race and ethnicity categories. This work presents a novel pathway to enhance RWD utility in studying racial disparities in healthcare.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"433-445"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The incompleteness of race and ethnicity information in real-world data (RWD) hampers its utility in promoting healthcare equity. This study introduces two methods-one heuristic and the other machine learning-based-to impute race and ethnicity from genetic ancestry using tumor profiling data. Analyzing de-identified data from over 100,000 cancer patients sequenced with the Tempus xT panel, we demonstrate that both methods outperform existing geolocation and surname-based methods, with the machine learning approach achieving high recall (range: 0.859-0.993) and precision (range: 0.932-0.981) across four mutually exclusive race and ethnicity categories. This work presents a novel pathway to enhance RWD utility in studying racial disparities in healthcare.

利用真实世界基因组测试数据中的遗传祖先推算种族和人种类别。
真实世界数据(RWD)中种族和民族信息的不完整性阻碍了其在促进医疗公平方面的作用。本研究介绍了两种方法--一种是启发式方法,另一种是基于机器学习的方法--利用肿瘤图谱数据从遗传祖先推算种族和人种。通过分析用 Tempus xT 面板测序的 10 万多名癌症患者的去标识化数据,我们证明这两种方法都优于现有的基于地理位置和姓氏的方法,其中机器学习方法在四个相互排斥的种族和民族类别中实现了高召回率(范围:0.859-0.993)和高精确度(范围:0.932-0.981)。这项工作提出了一种新的途径,以提高 RWD 在研究医疗保健中种族差异方面的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信