Brooke Rhead, Paige E Haffener, Yannick Pouliot, Francisco M De La Vega
{"title":"Imputation of race and ethnicity categories using genetic ancestry from real-world genomic testing data.","authors":"Brooke Rhead, Paige E Haffener, Yannick Pouliot, Francisco M De La Vega","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The incompleteness of race and ethnicity information in real-world data (RWD) hampers its utility in promoting healthcare equity. This study introduces two methods-one heuristic and the other machine learning-based-to impute race and ethnicity from genetic ancestry using tumor profiling data. Analyzing de-identified data from over 100,000 cancer patients sequenced with the Tempus xT panel, we demonstrate that both methods outperform existing geolocation and surname-based methods, with the machine learning approach achieving high recall (range: 0.859-0.993) and precision (range: 0.932-0.981) across four mutually exclusive race and ethnicity categories. This work presents a novel pathway to enhance RWD utility in studying racial disparities in healthcare.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"29 ","pages":"433-445"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The incompleteness of race and ethnicity information in real-world data (RWD) hampers its utility in promoting healthcare equity. This study introduces two methods-one heuristic and the other machine learning-based-to impute race and ethnicity from genetic ancestry using tumor profiling data. Analyzing de-identified data from over 100,000 cancer patients sequenced with the Tempus xT panel, we demonstrate that both methods outperform existing geolocation and surname-based methods, with the machine learning approach achieving high recall (range: 0.859-0.993) and precision (range: 0.932-0.981) across four mutually exclusive race and ethnicity categories. This work presents a novel pathway to enhance RWD utility in studying racial disparities in healthcare.