Dysregulated Salience Network Control over Default-Mode and Central-Executive Networks in Schizophrenia Revealed Using Stochastic Dynamical Causal Modeling.
Deepa S Thakuri, Puskar Bhattarai, Dean F Wong, Ganesh B Chand
{"title":"Dysregulated Salience Network Control over Default-Mode and Central-Executive Networks in Schizophrenia Revealed Using Stochastic Dynamical Causal Modeling.","authors":"Deepa S Thakuri, Puskar Bhattarai, Dean F Wong, Ganesh B Chand","doi":"10.1089/brain.2023.0054","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Neuroimaging studies suggest that the human brain consists of intrinsically organized, large-scale neural networks. Among these networks, the interplay among the default-mode network (DMN), salience network (SN), and central-executive network (CEN) has been widely used to understand the functional interaction patterns in health and disease. This triple network model suggests that the SN causally controls over the DMN and CEN in healthy individuals. This interaction is often referred to as SN's dynamic regulating mechanism. However, such interactions are not well understood in individuals with schizophrenia. <b><i>Methods:</i></b> In this study, we leveraged resting-state functional magnetic resonance imaging data from schizophrenia (<i>n</i> = 67) and healthy controls (<i>n</i> = 81) and evaluated the directional functional interactions among DMN, SN, and CEN using stochastic dynamical causal modeling methodology. <b><i>Results:</i></b> In healthy controls, our analyses replicated previous findings that SN regulates DMN and CEN activities (Mann-Whitney <i>U</i> test; <i>p</i> < 10<sup>-8</sup>). In schizophrenia, however, our analyses revealed a disrupted SN-based controlling mechanism over the DMN and CEN (Mann-Whitney <i>U</i> test; <i>p</i> < 10<sup>-16</sup>). <b><i>Conclusions:</i></b> These results indicate that the disrupted controlling mechanism of SN over the other two neural networks may be a candidate neuroimaging phenotype in schizophrenia.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"70-79"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0054","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Neuroimaging studies suggest that the human brain consists of intrinsically organized, large-scale neural networks. Among these networks, the interplay among the default-mode network (DMN), salience network (SN), and central-executive network (CEN) has been widely used to understand the functional interaction patterns in health and disease. This triple network model suggests that the SN causally controls over the DMN and CEN in healthy individuals. This interaction is often referred to as SN's dynamic regulating mechanism. However, such interactions are not well understood in individuals with schizophrenia. Methods: In this study, we leveraged resting-state functional magnetic resonance imaging data from schizophrenia (n = 67) and healthy controls (n = 81) and evaluated the directional functional interactions among DMN, SN, and CEN using stochastic dynamical causal modeling methodology. Results: In healthy controls, our analyses replicated previous findings that SN regulates DMN and CEN activities (Mann-Whitney U test; p < 10-8). In schizophrenia, however, our analyses revealed a disrupted SN-based controlling mechanism over the DMN and CEN (Mann-Whitney U test; p < 10-16). Conclusions: These results indicate that the disrupted controlling mechanism of SN over the other two neural networks may be a candidate neuroimaging phenotype in schizophrenia.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.