Knockdown of circSlc8a1 inhibited the ferroptosis in the angiotensin II treated H9c2 cells via miR-673-5p/TFRC axis

IF 2.9 4区 生物学 Q2 BIOPHYSICS
Kaidi Wu, Jiawei Du
{"title":"Knockdown of circSlc8a1 inhibited the ferroptosis in the angiotensin II treated H9c2 cells via miR-673-5p/TFRC axis","authors":"Kaidi Wu, Jiawei Du","doi":"10.1007/s10863-023-10000-z","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>This study aimed to investigate the role of circSlc8a1 in cardiac hypertrophy (CH), a pathological change in various cardiovascular diseases.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>An in vitro CH model was established using angiotensin II (AngII) treated H9c2 cells, followed by western blotting and RT-qPCR for detecting relative expressions. Cell viability and proliferation were analyzed using CCK-8 and EdU assays, while lactate dehydrogenase (LDH), reactive oxygen species (ROS), glutathione (GSH), and iron levels were determined using corresponding kits. Moreover, dual-luciferase reporter and RNA pull-down assays were performed to demonstrate whether miR-673-5p is bound to circSlc8a1 or transferrin receptor (TFRC).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The results indicated that the expressions of circSlc8a1 and TFRC were increased, while miR-673-5p was decreased in the AngII treated H9c2 cells. The ferroptosis inhibitor treatment decreased the atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-major histocompatibility complex (β-MHC) protein expressions, and circSlc8a1 expressions. Knocking down of circSlc8a1 inhibited promoted the cell viability and proliferation, increased the GSH content, glutathione peroxidase 4, and solute carrier family 7 member 11 protein expressions, and decreased the LDH, ROS, iron levels, and RAS protein expressions. The MiR-673-5p inhibitor antagonized the role of si-circSlc8a1, and the over-expressed TFRC reversed the miR-673-5p mimicking effects in AngII treated H9c2 cells.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>CircSlc8a1 promoted the ferroptosis in CH via regulating the miR-673-5p/TFRC axis.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-10000-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

This study aimed to investigate the role of circSlc8a1 in cardiac hypertrophy (CH), a pathological change in various cardiovascular diseases.

Methods

An in vitro CH model was established using angiotensin II (AngII) treated H9c2 cells, followed by western blotting and RT-qPCR for detecting relative expressions. Cell viability and proliferation were analyzed using CCK-8 and EdU assays, while lactate dehydrogenase (LDH), reactive oxygen species (ROS), glutathione (GSH), and iron levels were determined using corresponding kits. Moreover, dual-luciferase reporter and RNA pull-down assays were performed to demonstrate whether miR-673-5p is bound to circSlc8a1 or transferrin receptor (TFRC).

Results

The results indicated that the expressions of circSlc8a1 and TFRC were increased, while miR-673-5p was decreased in the AngII treated H9c2 cells. The ferroptosis inhibitor treatment decreased the atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-major histocompatibility complex (β-MHC) protein expressions, and circSlc8a1 expressions. Knocking down of circSlc8a1 inhibited promoted the cell viability and proliferation, increased the GSH content, glutathione peroxidase 4, and solute carrier family 7 member 11 protein expressions, and decreased the LDH, ROS, iron levels, and RAS protein expressions. The MiR-673-5p inhibitor antagonized the role of si-circSlc8a1, and the over-expressed TFRC reversed the miR-673-5p mimicking effects in AngII treated H9c2 cells.

Conclusion

CircSlc8a1 promoted the ferroptosis in CH via regulating the miR-673-5p/TFRC axis.

Abstract Image

通过 miR-673-5p/TFRC 轴敲除 circSlc8a1 可抑制血管紧张素 II 处理的 H9c2 细胞的铁卟啉沉积作用
背景本研究旨在探讨circSlc8a1在心肌肥厚(CH)中的作用,心肌肥厚是多种心血管疾病的一种病理变化。方法使用血管紧张素II(AngII)处理的H9c2细胞建立体外CH模型,然后进行Western印迹和RT-qPCR检测相对表达。细胞活力和增殖采用 CCK-8 和 EdU 检测法进行分析,乳酸脱氢酶(LDH)、活性氧(ROS)、谷胱甘肽(GSH)和铁水平则采用相应的试剂盒进行测定。结果表明,在 AngII 处理的 H9c2 细胞中,circSlc8a1 和 TFRC 的表达量增加,而 miR-673-5p 的表达量减少。铁变态反应抑制剂处理降低了心房利钠肽(ANP)、脑利钠肽(BNP)、β-主要组织相容性复合体(β-MHC)蛋白的表达和circSlc8a1的表达。敲除 circSlc8a1 可抑制细胞活力和增殖,增加 GSH 含量、谷胱甘肽过氧化物酶 4 和溶质运载家族 7 成员 11 蛋白表达,降低 LDH、ROS、铁水平和 RAS 蛋白表达。MiR-673-5p 抑制剂拮抗了 si-circSlc8a1 的作用,过表达的 TFRC 逆转了 AngII 处理的 H9c2 细胞的 miR-673-5p 模拟效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
22
审稿时长
6-12 weeks
期刊介绍: The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信