{"title":"Liouville-type theorems for fractional Hardy–Hénon systems","authors":"Kui Li, Meng Yu, Zhitao Zhang","doi":"10.1007/s00030-023-00903-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study Liouville-type theorems for fractional Hardy–Hénon elliptic systems with weights. Because the weights are singular at zero, we firstly prove that classical solutions for systems in <span>\\({\\mathbb {R}}^N \\backslash \\{0\\}\\)</span> are also distributional solutions in <span>\\({\\mathbb {R}}^N\\)</span>. Then we study the equivalence between the fractional Hardy–Hénon system and a proper integral system, and we obtain new Liouville-type theorems for supersolutions and solutions by the method of integral estimates and scaling spheres respectively.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00903-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study Liouville-type theorems for fractional Hardy–Hénon elliptic systems with weights. Because the weights are singular at zero, we firstly prove that classical solutions for systems in \({\mathbb {R}}^N \backslash \{0\}\) are also distributional solutions in \({\mathbb {R}}^N\). Then we study the equivalence between the fractional Hardy–Hénon system and a proper integral system, and we obtain new Liouville-type theorems for supersolutions and solutions by the method of integral estimates and scaling spheres respectively.