Sparse multiple kernel learning: Minimax rates with random projection

Pub Date : 2023-12-27 DOI:10.1016/j.jspi.2023.106142
Wenqi Lu , Zhongyi Zhu , Rui Li , Heng Lian
{"title":"Sparse multiple kernel learning: Minimax rates with random projection","authors":"Wenqi Lu ,&nbsp;Zhongyi Zhu ,&nbsp;Rui Li ,&nbsp;Heng Lian","doi":"10.1016/j.jspi.2023.106142","DOIUrl":null,"url":null,"abstract":"<div><p>In kernel-based learning, the random projection method, also called random sketching, has been successfully used in kernel ridge regression to reduce the computational burden in the big data setting, and at the same time retain the minimax convergence rate. In this work, we consider its use in sparse multiple kernel learning problems where a closed-form optimizer is not available, which poses significant technical challenges, for which the existing results do not carry over directly. Even when random projection is not used, our risk bound improves on the existing results in several aspects. We also illustrate the use of random projection via some numerical examples.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823001118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In kernel-based learning, the random projection method, also called random sketching, has been successfully used in kernel ridge regression to reduce the computational burden in the big data setting, and at the same time retain the minimax convergence rate. In this work, we consider its use in sparse multiple kernel learning problems where a closed-form optimizer is not available, which poses significant technical challenges, for which the existing results do not carry over directly. Even when random projection is not used, our risk bound improves on the existing results in several aspects. We also illustrate the use of random projection via some numerical examples.

分享
查看原文
稀疏多核学习:随机投影的最小率
在基于内核的学习中,随机投影法(又称随机草图法)已成功应用于内核脊回归,以减轻大数据环境下的计算负担,同时保留最小收敛率。在这项工作中,我们考虑将其用于稀疏多核学习问题中,因为在这些问题中没有闭式优化器,这带来了巨大的技术挑战,而现有的结果并不能直接用于这些问题。即使不使用随机投影,我们的风险边界也在多个方面改进了现有结果。我们还通过一些数值示例说明了随机投影的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信