Emulsion Gels Based on Quinoa Protein Hydrolysates, Alginate, and High-Oleic Sunflower Oil: Evaluation of Their Physicochemical and Textural Properties
{"title":"Emulsion Gels Based on Quinoa Protein Hydrolysates, Alginate, and High-Oleic Sunflower Oil: Evaluation of Their Physicochemical and Textural Properties","authors":"Nadia Lingiardi, Micaela Galante, Darío Spelzini","doi":"10.1007/s11483-023-09817-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to assess the physicochemical and mechanical properties of O/W emulsion gels formulated with quinoa protein partial hydrolysates (QPH). The effect of varying QPH concentrations (0.5%, 1%, and 2%) on these attributes was also investigated. The QPH were obtained from quinoa protein concentrate (QPC) after treatment with alcalase. Surface hydrophobicity (S<sub>0</sub>) and emulsifying properties of QPH suspensions were determined. Microstructure, color, water holding capacity (WHC), thermal stability, as well as textural properties of the formulated emulsion gels, were also evaluated. After the hydrolysis treatment, S<sub>0</sub> exhibited a significant increase (<i>p</i> = 0.006). The emulsifying activity of QPH also increased (<i>p</i> = 0.002), while the emulsion stability decreased (<i>p</i> < 0.000) as QPH concentrations increased. Confocal laser scanning microscopy images showed that in QPH-based emulsion gels, oil droplets seemed to be more associated with each other forming a three-dimensional network that was less bound to the matrix, in comparison with QPC-based emulsion gels. In addition, hydrolysis produced a significant reduction in WHC of emulsion gels (<i>p</i> = 0.000); however, in all samples evaluated the WHC was around 70%. Furthermore, after heat treatment, there was a decrease in this parameter (<i>p</i> < 0.000). The evaluation of textural properties showed that hardness was significantly lower for emulsion gels formulated with QPH (<i>p</i> < 0.000); whereas no differences between emulsion gels with 0.5% QPC and those with 0.5, 1, and 2% QPH were obtained. Therefore, hydrolysates have the potential to be used in emulsion gel formulation and could be applied to the development of soft-solid food products.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"298 - 309"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-023-09817-3","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to assess the physicochemical and mechanical properties of O/W emulsion gels formulated with quinoa protein partial hydrolysates (QPH). The effect of varying QPH concentrations (0.5%, 1%, and 2%) on these attributes was also investigated. The QPH were obtained from quinoa protein concentrate (QPC) after treatment with alcalase. Surface hydrophobicity (S0) and emulsifying properties of QPH suspensions were determined. Microstructure, color, water holding capacity (WHC), thermal stability, as well as textural properties of the formulated emulsion gels, were also evaluated. After the hydrolysis treatment, S0 exhibited a significant increase (p = 0.006). The emulsifying activity of QPH also increased (p = 0.002), while the emulsion stability decreased (p < 0.000) as QPH concentrations increased. Confocal laser scanning microscopy images showed that in QPH-based emulsion gels, oil droplets seemed to be more associated with each other forming a three-dimensional network that was less bound to the matrix, in comparison with QPC-based emulsion gels. In addition, hydrolysis produced a significant reduction in WHC of emulsion gels (p = 0.000); however, in all samples evaluated the WHC was around 70%. Furthermore, after heat treatment, there was a decrease in this parameter (p < 0.000). The evaluation of textural properties showed that hardness was significantly lower for emulsion gels formulated with QPH (p < 0.000); whereas no differences between emulsion gels with 0.5% QPC and those with 0.5, 1, and 2% QPH were obtained. Therefore, hydrolysates have the potential to be used in emulsion gel formulation and could be applied to the development of soft-solid food products.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.