Uniformly more powerful tests for a subset of the components of a Normal Mean Vector

Pub Date : 2023-12-27 DOI:10.1016/j.jspi.2023.106141
Yining Wang , Gang Li
{"title":"Uniformly more powerful tests for a subset of the components of a Normal Mean Vector","authors":"Yining Wang ,&nbsp;Gang Li","doi":"10.1016/j.jspi.2023.106141","DOIUrl":null,"url":null,"abstract":"<div><p>A class of tests that are uniformly more powerful than the likelihood ratio test<span> is derived for testing the hypothesis about the means of a subset of the components of a multivariate normal distribution<span> with unknown covariance matrix, when the means of the other subset of the components are known.</span></span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823001106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A class of tests that are uniformly more powerful than the likelihood ratio test is derived for testing the hypothesis about the means of a subset of the components of a multivariate normal distribution with unknown covariance matrix, when the means of the other subset of the components are known.

分享
查看原文
对正态均值向量的子集成分进行统一的更强大测试
推导出一类比似然比检验更有效的检验方法,用于检验具有未知协方差矩阵的多元正态分布中一个子集分量的均值假设,而另一个子集分量的均值是已知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信