On the use of viscous micropumps for the transport of thixotropic fluids

IF 2.2 4区 工程技术 Q2 MECHANICS
M. Pourjafar-Chelikdani, M. Y. Heidari, A. Vakili, A. Abdollahi, A. Mahdavi Nejad, K. Sadeghy
{"title":"On the use of viscous micropumps for the transport of thixotropic fluids","authors":"M. Pourjafar-Chelikdani,&nbsp;M. Y. Heidari,&nbsp;A. Vakili,&nbsp;A. Abdollahi,&nbsp;A. Mahdavi Nejad,&nbsp;K. Sadeghy","doi":"10.1007/s13367-023-00083-w","DOIUrl":null,"url":null,"abstract":"<div><p>A cylinder rotating in an off-center position across a microchannel is known to generate a net flow for highly viscous Newtonian fluids. The mechanism is also known to be a viable option for the transport of viscoelastic or viscoplastic fluids albeit with a slight drop in performance. In the present work, the applicability of this mechanism is numerically investigated for the transport of (inelastic) time-dependent fluids obeying the structural-based Quemada model. By numerically solving the equations of motion, it is predicted that viscous micropumps can be used for the transport of thixotropic fluids although the obtained numerical results suggest that there exists a critical thixotropy number (a dimensionless number related to the fluid’s natural time) at which the flow rate is at its lowest value. It is shown that the critical thixotropy number can be avoided from the response of the fluid by properly choosing the geometrical parameters of the device. The general conclusion is that viscous micropumps can be deemed as an efficient mechanism for the transport of thixotropic fluids in microfluidic systems provided that the thixotropy number is sufficiently small, i.e., the fluid is strongly thixotropic. The device is predicted to be more suitable for anti-thixotropic fluids.</p></div>","PeriodicalId":683,"journal":{"name":"Korea-Australia Rheology Journal","volume":"36 1","pages":"55 - 69"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea-Australia Rheology Journal","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13367-023-00083-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A cylinder rotating in an off-center position across a microchannel is known to generate a net flow for highly viscous Newtonian fluids. The mechanism is also known to be a viable option for the transport of viscoelastic or viscoplastic fluids albeit with a slight drop in performance. In the present work, the applicability of this mechanism is numerically investigated for the transport of (inelastic) time-dependent fluids obeying the structural-based Quemada model. By numerically solving the equations of motion, it is predicted that viscous micropumps can be used for the transport of thixotropic fluids although the obtained numerical results suggest that there exists a critical thixotropy number (a dimensionless number related to the fluid’s natural time) at which the flow rate is at its lowest value. It is shown that the critical thixotropy number can be avoided from the response of the fluid by properly choosing the geometrical parameters of the device. The general conclusion is that viscous micropumps can be deemed as an efficient mechanism for the transport of thixotropic fluids in microfluidic systems provided that the thixotropy number is sufficiently small, i.e., the fluid is strongly thixotropic. The device is predicted to be more suitable for anti-thixotropic fluids.

Abstract Image

Abstract Image

利用粘性微型泵输送触变性流体
对于高粘度牛顿流体来说,在微通道上以偏离中心位置旋转的圆柱体可以产生净流。尽管性能略有下降,但这种机制对于粘弹性或粘塑性流体的传输也是一种可行的选择。在本研究中,我们用数值方法研究了这种机制对(非弹性)随时间变化的流体的传输的适用性,该流体服从基于结构的 Quemada 模型。通过对运动方程进行数值求解,可以预测粘性微泵可用于输送触变性流体,但所获得的数值结果表明,存在一个临界触变数(与流体的自然时间有关的无量纲数),在该临界触变数下,流速达到最低值。结果表明,通过正确选择装置的几何参数,可以从流体响应中避免临界触变数。总的结论是,只要触变数足够小,即流体具有很强的触变性,粘性微泵就可以被视为微流体系统中输送触变性流体的有效机制。据预测,该装置更适用于反各向异性流体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Korea-Australia Rheology Journal
Korea-Australia Rheology Journal 工程技术-高分子科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology, covering the science of the deformation and flow of materials. Emphases are placed on experimental and numerical advances in the areas of complex fluids. The journal offers insight into characterization and understanding of technologically important materials with a wide range of practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信