A machine learning model to predict therapeutic inertia in type 2 diabetes using electronic health record data

IF 3.9 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM
C. C. McDaniel, W.-H. Lo-Ciganic, J. Huang, C. Chou
{"title":"A machine learning model to predict therapeutic inertia in type 2 diabetes using electronic health record data","authors":"C. C. McDaniel, W.-H. Lo-Ciganic, J. Huang, C. Chou","doi":"10.1007/s40618-023-02259-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objective</h3><p>To estimate the therapeutic inertia prevalence for patients with type 2 diabetes, develop and validate a machine learning model predicting therapeutic inertia, and determine the added predictive value of area-level social determinants of health (SDOH).</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This prognostic study with a retrospective cohort design used OneFlorida data (linked electronic health records (EHRs) from 1240 practices/clinics in Florida). The study cohort included adults (aged ≥ 18) with type 2 diabetes, HbA1C ≥ 7% (53 mmol/mol), ≥one ambulatory visit, and ≥one antihyperglycemic medication prescribed (excluded patients prescribed insulin before HbA1C). The outcome was therapeutic inertia, defined as absence of treatment intensification within six months after HbA1C ≥ 7% (53 mmol/mol). The predictors were patient, provider, and healthcare system factors. Machine learning methods included gradient boosting machines (GBM), random forests (RF), elastic net (EN), and least absolute shrinkage and selection operator (LASSO). The DeLong test compared the discriminative ability (represented by C-statistics) between models.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The cohort included 31,087 patients with type 2 diabetes (mean age = 58.89 (SD = 13.27) years, 50.50% male, 58.89% White). The therapeutic inertia prevalence was 39.80% among the 68,445 records. GBM outperformed (C-statistic from testing sample = 0.84, 95% CI = 0.83–0.84) RF (C-statistic = 0.80, 95% CI = 0.79–0.80), EN (C-statistic = 0.80, 95% CI = 0.80–0.81), and LASSO (C-statistic = 0.80, 95% CI = 0.80–0.81), <i>p</i> &lt; 0.05. Area-level SDOH significantly increased the discriminative ability versus models without SDOH (C-statistic for GBM = 0.84, 95% CI = 0.84–0.85 vs. 0.84, 95% CI = 0.83–0.84), <i>p</i> &lt; 0.05.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Using EHRs of patients with type 2 diabetes from a large state, machine learning predicted therapeutic inertia (prevalence = 40%). The model’s ability to predict patients at high risk of therapeutic inertia is clinically applicable to diabetes care.</p>","PeriodicalId":15651,"journal":{"name":"Journal of Endocrinological Investigation","volume":"34 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinological Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40618-023-02259-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To estimate the therapeutic inertia prevalence for patients with type 2 diabetes, develop and validate a machine learning model predicting therapeutic inertia, and determine the added predictive value of area-level social determinants of health (SDOH).

Methods

This prognostic study with a retrospective cohort design used OneFlorida data (linked electronic health records (EHRs) from 1240 practices/clinics in Florida). The study cohort included adults (aged ≥ 18) with type 2 diabetes, HbA1C ≥ 7% (53 mmol/mol), ≥one ambulatory visit, and ≥one antihyperglycemic medication prescribed (excluded patients prescribed insulin before HbA1C). The outcome was therapeutic inertia, defined as absence of treatment intensification within six months after HbA1C ≥ 7% (53 mmol/mol). The predictors were patient, provider, and healthcare system factors. Machine learning methods included gradient boosting machines (GBM), random forests (RF), elastic net (EN), and least absolute shrinkage and selection operator (LASSO). The DeLong test compared the discriminative ability (represented by C-statistics) between models.

Results

The cohort included 31,087 patients with type 2 diabetes (mean age = 58.89 (SD = 13.27) years, 50.50% male, 58.89% White). The therapeutic inertia prevalence was 39.80% among the 68,445 records. GBM outperformed (C-statistic from testing sample = 0.84, 95% CI = 0.83–0.84) RF (C-statistic = 0.80, 95% CI = 0.79–0.80), EN (C-statistic = 0.80, 95% CI = 0.80–0.81), and LASSO (C-statistic = 0.80, 95% CI = 0.80–0.81), p < 0.05. Area-level SDOH significantly increased the discriminative ability versus models without SDOH (C-statistic for GBM = 0.84, 95% CI = 0.84–0.85 vs. 0.84, 95% CI = 0.83–0.84), p < 0.05.

Conclusions

Using EHRs of patients with type 2 diabetes from a large state, machine learning predicted therapeutic inertia (prevalence = 40%). The model’s ability to predict patients at high risk of therapeutic inertia is clinically applicable to diabetes care.

Abstract Image

利用电子健康记录数据预测 2 型糖尿病治疗惰性的机器学习模型
目标估计 2 型糖尿病患者的治疗惰性发生率,开发并验证预测治疗惰性的机器学习模型,并确定地区级健康社会决定因素 (SDOH) 的附加预测价值。方法这项采用回顾性队列设计的预后研究使用了 OneFlorida 数据(来自佛罗里达州 1240 家诊所/诊所的链接电子健康记录 (EHR))。研究队列包括 2 型糖尿病成人(年龄≥ 18 岁)、HbA1C ≥ 7% (53 mmol/mol)、≥ 一次门诊就诊和≥ 一种降糖药物处方(不包括 HbA1C 前已处方胰岛素的患者)。结果为治疗惰性,即 HbA1C ≥ 7% (53 mmol/mol)后六个月内未加强治疗。预测因素包括患者、提供者和医疗保健系统因素。机器学习方法包括梯度提升机(GBM)、随机森林(RF)、弹性网(EN)和最小绝对收缩和选择算子(LASSO)。结果队列中包括 31,087 名 2 型糖尿病患者(平均年龄 = 58.89 (SD = 13.27) 岁,50.50% 为男性,58.89% 为白人)。在 68,445 条记录中,治疗惰性发生率为 39.80%。GBM的表现优于(来自测试样本的C统计量 = 0.84,95% CI = 0.83-0.84)RF(C统计量 = 0.80,95% CI = 0.79-0.80)、EN(C统计量 = 0.80,95% CI = 0.80-0.81)和LASSO(C统计量 = 0.80,95% CI = 0.80-0.81),p <0.05。结论利用大州 2 型糖尿病患者的电子病历,机器学习预测了治疗惰性(患病率 = 40%)。该模型预测治疗惰性高风险患者的能力适用于临床糖尿病护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Endocrinological Investigation
Journal of Endocrinological Investigation 医学-内分泌学与代谢
CiteScore
8.70
自引率
7.40%
发文量
242
审稿时长
3 months
期刊介绍: The Journal of Endocrinological Investigation is a well-established, e-only endocrine journal founded 36 years ago in 1978. It is the official journal of the Italian Society of Endocrinology (SIE), established in 1964. Other Italian societies in the endocrinology and metabolism field are affiliated to the journal: Italian Society of Andrology and Sexual Medicine, Italian Society of Obesity, Italian Society of Pediatric Endocrinology and Diabetology, Clinical Endocrinologists’ Association, Thyroid Association, Endocrine Surgical Units Association, Italian Society of Pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信