Yibo Han, Pu Han, Bo Yuan, Zheng Zhang, Lu Liu, John Panneerselvam
{"title":"Novel Transformation Deep Learning Model for Electrocardiogram Classification and Arrhythmia Detection using Edge Computing","authors":"Yibo Han, Pu Han, Bo Yuan, Zheng Zhang, Lu Liu, John Panneerselvam","doi":"10.1007/s10723-023-09717-3","DOIUrl":null,"url":null,"abstract":"<p>The diagnosis of the cardiovascular disease relies heavily on the automated classification of electrocardiograms (ECG) for arrhythmia monitoring, which is often performed using machine learning (ML) algorithms. However, current ML algorithms are typically deployed using cloud-based inferences, which may not meet the reliability and security requirements for ECG monitoring. A newer solution, edge inference, has been developed to address speed, security, connection, and reliability issues. This paper presents an edge-based algorithm that combines continuous wavelet transform (CWT), and short-time Fourier transform (STFT), in a hybrid convolutional neural network (CNN) and Long Short-Term Memory (LSTM) model techniques for real-time ECG classification and arrhythmia detection. The algorithm incorporates an STFT CWT-based 1D convolutional (Conv1D) layer as a Finite Impulse Response (FIR) filter to generate the spectrogram of the input ECG signal. The output feature maps from the Conv1D layer are then reshaped into a 2D heart map image and fed into a hybrid convolutional neural network (2D-CNN) and Long Short-Term Memory (LSTM) classification model. The MIT-BIH arrhythmia database is used to train and evaluate the model. Using a cloud platform, four model versions are learned, considered, and optimized for edge computing on a Raspberry Pi device. Techniques such as weight quantization and pruning enhance the algorithms created for edge inference. The proposed classifiers can operate with a total target size of 90 KB, an overall inference time of 9 ms, and higher memory use of 12 MB while achieving up to 99.6% classification accuracy and a 99.88% F1-score at the edge. Thanks to its results, the suggested classifier is highly versatile and can be used for arrhythmia monitoring on various edge devices.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"82 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09717-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The diagnosis of the cardiovascular disease relies heavily on the automated classification of electrocardiograms (ECG) for arrhythmia monitoring, which is often performed using machine learning (ML) algorithms. However, current ML algorithms are typically deployed using cloud-based inferences, which may not meet the reliability and security requirements for ECG monitoring. A newer solution, edge inference, has been developed to address speed, security, connection, and reliability issues. This paper presents an edge-based algorithm that combines continuous wavelet transform (CWT), and short-time Fourier transform (STFT), in a hybrid convolutional neural network (CNN) and Long Short-Term Memory (LSTM) model techniques for real-time ECG classification and arrhythmia detection. The algorithm incorporates an STFT CWT-based 1D convolutional (Conv1D) layer as a Finite Impulse Response (FIR) filter to generate the spectrogram of the input ECG signal. The output feature maps from the Conv1D layer are then reshaped into a 2D heart map image and fed into a hybrid convolutional neural network (2D-CNN) and Long Short-Term Memory (LSTM) classification model. The MIT-BIH arrhythmia database is used to train and evaluate the model. Using a cloud platform, four model versions are learned, considered, and optimized for edge computing on a Raspberry Pi device. Techniques such as weight quantization and pruning enhance the algorithms created for edge inference. The proposed classifiers can operate with a total target size of 90 KB, an overall inference time of 9 ms, and higher memory use of 12 MB while achieving up to 99.6% classification accuracy and a 99.88% F1-score at the edge. Thanks to its results, the suggested classifier is highly versatile and can be used for arrhythmia monitoring on various edge devices.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.