Efficient hydrogen evolution from g-C3N4 under visible light by in situ loading Ag2Se nanoparticles as co-catalysts

IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Zhenbang Xie , Qihang Liu , Haixin Zhao , Hongtai Chen , Guozhi Jia , E. Lei , Chao Wang , Yongzhu Zhou
{"title":"Efficient hydrogen evolution from g-C3N4 under visible light by in situ loading Ag2Se nanoparticles as co-catalysts","authors":"Zhenbang Xie ,&nbsp;Qihang Liu ,&nbsp;Haixin Zhao ,&nbsp;Hongtai Chen ,&nbsp;Guozhi Jia ,&nbsp;E. Lei ,&nbsp;Chao Wang ,&nbsp;Yongzhu Zhou","doi":"10.1016/j.catcom.2023.106837","DOIUrl":null,"url":null,"abstract":"<div><p>The low charge separation and transfer of g-C<sub>3</sub>N<sub>4</sub> hinders its industrial application in photocatalytic hydrogen evolution. Here, we design a novel co-catalyst strategy to integrate Ag<sub>2</sub>Se nanoparticles in situ on the surface of g-C<sub>3</sub>N<sub>4</sub>. The optimized photocatalyst, 15% Ag<sub>2</sub>Se/g-C<sub>3</sub>N<sub>4</sub>, demonstrates remarkable photocatalytic efficiency in the hydrogen evolution rate, reaching to 1102.8 μmol·g<sup>−1</sup>·h<sup>−1</sup>, 7 times higher than g-C<sub>3</sub>N<sub>4</sub>. To further elucidate the photocatalytic activity of 15% Ag<sub>2</sub>Se/g-C<sub>3</sub>N<sub>4</sub>, we present a possible mechanism based on various characterizations and density functional theory calculations. This research offers potential insights for the future development of silver chalcogenide composites in photocatalysis.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"186 ","pages":"Article 106837"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156673672300239X/pdfft?md5=0024ec063bc7afbe3577f1a1973a56fe&pid=1-s2.0-S156673672300239X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156673672300239X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The low charge separation and transfer of g-C3N4 hinders its industrial application in photocatalytic hydrogen evolution. Here, we design a novel co-catalyst strategy to integrate Ag2Se nanoparticles in situ on the surface of g-C3N4. The optimized photocatalyst, 15% Ag2Se/g-C3N4, demonstrates remarkable photocatalytic efficiency in the hydrogen evolution rate, reaching to 1102.8 μmol·g−1·h−1, 7 times higher than g-C3N4. To further elucidate the photocatalytic activity of 15% Ag2Se/g-C3N4, we present a possible mechanism based on various characterizations and density functional theory calculations. This research offers potential insights for the future development of silver chalcogenide composites in photocatalysis.

Abstract Image

Abstract Image

通过原位负载 Ag2Se 纳米粒子作为助催化剂,在可见光下高效实现 g-C3N4 的氢气进化
g-C3N4 的电荷分离和转移能力较低,阻碍了其在光催化氢气进化中的工业应用。在此,我们设计了一种新颖的助催化剂策略,在 g-C3N4 表面原位集成 Ag2Se 纳米颗粒。优化后的 Ag2Se/g-C3N4 光催化剂(15% Ag2Se/g-C3N4)在氢气进化速率方面表现出显著的光催化效率,达到 1102.8 μmol-g-1-h-1,是 g-C3N4 的 7 倍。为了进一步阐明 15% Ag2Se/g-C3N4 的光催化活性,我们根据各种表征和密度泛函理论计算提出了一种可能的机制。这项研究为未来开发光催化领域的银铬化合物复合材料提供了潜在的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Communications
Catalysis Communications 化学-物理化学
CiteScore
6.20
自引率
2.70%
发文量
183
审稿时长
46 days
期刊介绍: Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信