{"title":"On the Birman Problem in the Theory of Nonnegative Symmetric Operators with Compact Inverse","authors":"M. M. Malamud","doi":"10.1134/S0016266323020090","DOIUrl":null,"url":null,"abstract":"<p> Large classes of nonnegative Schrödinger operators on <span>\\(\\Bbb R^2\\)</span> and <span>\\(\\Bbb R^3\\)</span> with the following properties are described: </p><p> 1. The restriction of each of these operators to an appropriate unbounded set of measure zero in <span>\\(\\Bbb R^2\\)</span> (in <span>\\(\\Bbb R^3\\)</span>) is a nonnegative symmetric operator (the operator of a Dirichlet problem) with compact preresolvent; </p><p> 2. Under certain additional assumptions on the potential, the Friedrichs extension of such a restriction has continuous (sometimes absolutely continuous) spectrum filling the positive semiaxis. </p><p> The obtained results give a solution of a problem by M. S. Birman. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323020090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Large classes of nonnegative Schrödinger operators on \(\Bbb R^2\) and \(\Bbb R^3\) with the following properties are described:
1. The restriction of each of these operators to an appropriate unbounded set of measure zero in \(\Bbb R^2\) (in \(\Bbb R^3\)) is a nonnegative symmetric operator (the operator of a Dirichlet problem) with compact preresolvent;
2. Under certain additional assumptions on the potential, the Friedrichs extension of such a restriction has continuous (sometimes absolutely continuous) spectrum filling the positive semiaxis.
The obtained results give a solution of a problem by M. S. Birman.