{"title":"Limit Spectral Measures of Matrix Distributions of Metric Triples","authors":"A. M. Vershik, F. V. Petrov","doi":"10.1134/S0016266323020089","DOIUrl":null,"url":null,"abstract":"<p> The notion of the limit spectral measure of a metric triple (i.e., a metric measure space) is defined. If the metric is square integrable, then the limit spectral measure is deterministic and coincides with the spectrum of the integral operator on <span>\\(L^2(\\mu)\\)</span> with kernel <span>\\(\\rho\\)</span>. An example in which there is no deterministic spectral measure is constructed. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323020089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The notion of the limit spectral measure of a metric triple (i.e., a metric measure space) is defined. If the metric is square integrable, then the limit spectral measure is deterministic and coincides with the spectrum of the integral operator on \(L^2(\mu)\) with kernel \(\rho\). An example in which there is no deterministic spectral measure is constructed.