Some Inequalities for \(p\)-Quermassintegrals

Pub Date : 2023-12-29 DOI:10.1134/S0016266323020028
Weidong Wang, Yanping Zhou
{"title":"Some Inequalities for \\(p\\)-Quermassintegrals","authors":"Weidong Wang,&nbsp;Yanping Zhou","doi":"10.1134/S0016266323020028","DOIUrl":null,"url":null,"abstract":"<p> In this paper, we generalize the notions of quermassintegrals, harmonic quermassintegrals, and affine quermassintegrals to <span>\\(p\\)</span>-quermassintegrals so that the cases <span>\\(p=1, -1, -n\\)</span> of <span>\\(p\\)</span>-quermassintegrals are quermassintegrals, harmonic quermassintegrals, and affine quermassintegrals, respectively. Further, we obtain some inequalities associated with <span>\\(p\\)</span>-quermassintegrals, including <span>\\(L_q\\)</span> Brunn–Minkowski-type inequalities, a monotonic inequality, and a Bourgain–Milman-type inequality. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323020028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we generalize the notions of quermassintegrals, harmonic quermassintegrals, and affine quermassintegrals to \(p\)-quermassintegrals so that the cases \(p=1, -1, -n\) of \(p\)-quermassintegrals are quermassintegrals, harmonic quermassintegrals, and affine quermassintegrals, respectively. Further, we obtain some inequalities associated with \(p\)-quermassintegrals, including \(L_q\) Brunn–Minkowski-type inequalities, a monotonic inequality, and a Bourgain–Milman-type inequality.

分享
查看原文
关于 $$p$$ - 质点积分的一些不等式
Abstract 在本文中,我们将质点积分、调和质点积分和仿射质点积分的概念推广到了\(p\)-质点积分,从而使\(p\)-质点积分的\(p=1, -1, -n\)情况分别是质点积分、调和质点积分和仿射质点积分。此外,我们还得到了一些与 \(p\)-quermassintegrals 相关的不等式,包括 \(L_q\) Brunn-Minkowski 型不等式、单调不等式和 Bourgain-Milman 型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信